M

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

ANALYSIS AND DESIGN OF A DISTRIBUTED SYSTEM
FOR MANAGEMENT AND DISTRIBUTION OF
NATURAL LANGUAGE ASSERTIONS

by
Javier Palomo
September 2010

Thesis Co-Advisors: Man-Tak Shing
Bret Michael

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 2010 Master’s Thesis

4. TITLE AND SUBTITLE Analysis and Design of a Distributed System for | 5. FUNDING NUMBERS
Management and Distribution of Natural Language Assertions

6. AUTHOR(S) Javier Palomo

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey, CA 93943-5000

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number N.A. .

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (maximum 200 words)

This research entails the design and development of an automated system that allows researchers working remotely to
store, manage, and transfer assertion data to an external system run by the Intelligence Advanced Research Projects
Activity. The research stems from the University of Maryland's involvement in the Social-Cultural Content in
Language program which seeks to investigate methodologies, designs, and technologies that can contribute in the
understanding of the social goals of persons or groups of people by demonstrating a relationship between these goals
and their particular language use.

In this research we interview the stakeholders to determine the software requirements of the system. After a
careful analysis of the requirements we used the Unified Modeling Language notation to provide the reader a visual
model of the software design. Finally, we develop a working prototype of the proposed system consisting of two Web
services and a Web service client written in the Java programming language.

14. SUBJECT TERMS 15. NUMBER OF
SOA, Web services, Assertions, Knowledge Base PAGES
159
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified uu
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited
ANALYSIS AND DESIGN OF ADISTRIBUTED SYSTEM FOR MANAGEMENT AND
DISTRIBUTION OF NATURAL LANGUAGE ASSERTIONS

Javier Palomo
Major, United States Marine Corps
B.A., California State University—Fullerton, 2000

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 2010
Author: Javier Palomo
Approved by: Man-Tak Shing

Thesis Co-Advisor

Bret Michael
Thesis Co-Advisor

Peter J. Denning
Chairman, Department of Computer Science

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

This research entails the design and development of an automated system that allows
researchers working remotely to store, manage, and transfer assertion data to an external
system run by the Intelligence Advanced Research Projects Activity. The research stems
from the University of Maryland's involvement in the Social-Cultural Content in
Language program, which seeks to investigate methodologies, designs, and technologies
that can contribute in the understanding of the social goals of persons or groups of people
by demonstrating a relationship between these goals and their particular language use.

In this research, we interview the stakeholders to determine the software
requirements of the system. After a careful analysis of the requirements, we used the
Unified Modeling Language notation to provide the reader a visual model of the software
design. Finally, we develop a working prototype of the proposed system consisting of

two Web services and a Web service client written in the Java programming language.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUCGCTION. ...ttt ettt ettt ebt e e ebe e e s b e e e sab e e e saba e e sabeesereeas 1
A. THE PROBLEM ...ttt 1
B. THE SOLUTION ...ttt sare e e 2
C. ORGANIZATION ..ttt ettt be et e e e e s nbe e reeenre e 3
BACKGROUND ...ttt ettt et sttt e et e s srae s sbeesaaeenbessneeeans 5
A. SOCIAL CONTENT IN LANGUAGE.........ccooiiiiee e 5
1. [LA 0T 1103 1 [o R 5

2. S O A o] 11 (=11 (0T S 6

3. YN g A 0] 1R 8

a. (O 1= 1] 1 TSRO 8

b. Y7o (=] o oL T 8

C. SUPPOIT e 8

B. SERVICE-ORIENTED ARCHITECTURE ..o 9
1. S @ 2N 1 g1 { (oo [T [o T 9

2. PrinCiples 0f SOA ... 11

a. Services Are Reusable.........ccvv e, 11

b. Services Share a Formal Contractcccoceeveveei e, 11

C. Services Are Loosely Coupled..........coviiienineneniiiiieen, 11

d. Services Abstract Away Underlying LOQIC...........ccccvveriennne. 11

e. Services Are ComposabIe..........ccovieiiiniiniese e 12

f. Services Are AUTONOMOUS.........covveeeiveeiirieeiireeesreeesreeesaee e 12

g. Services Are Stateless.........coovviieiieie i 12

h. Services Are DISCOVErabIe..........covvvvvvviiiciiiiciec e, 13

3. Benefits of USING SOA ... 13

C. WEB SERVICES ...ttt ettt 14
1. RESTTUI WED SEIVICESvveeiveiiccte e 14

2. SOAP-Based WED SEIVICESccvvveirieicirie ittt 15

3. Web Service COMPONENTS........ccciieieiieiice e 15

a. SBIVICESeteie ettt s et e e e et e e e s s e e s s et be e e e s abaneeeaas 16

b. D= Tod 0] o] SR 16

C. XML Schema (XSD)oieiiieiiiie i 19

d. oS- To [o OSSR 21

D. SUMMARY ot sttt e st e e st e s sabe e s eab e e aes 23
SYSTEM REQUIREMENTS SPECIFICATION (SRS)cooviiiieeiieceeeseens 25
A. OVERVIEW ...ttt sttt 25
1. PUIPOSE......cceeeee e 25

2. SYStEM PErSPECLIVE.ccuveiicicciece et 25

3. System Features and Domain Model............cccooeiiiinininiininininns 25

4, INtENAEA AUGIENCEvveeiiiiiitiec e 27

B. FUNCTIONAL REQUIREMENTS. ..ot 27
1. Local USer Stores ASSEItION.........cocviiiiiie et 29

vii

2 Local User Transfers Assertion to Knowledge Base...........cccccceuvennne 31

3 Local User Replaces Assertion in the External System.................... 33

4 Local User Edits Assertion in Local Databas...........cc.ccccoeeninininnene 36

5 External User Queries ExplanationGetWsccccccovevviieieennns 39

6 External User Queries StatusReportWs ... 41

7 Administrator Sets the Capability Statusccccoccvevevieieiiciienns 42

8. Administrator Modifies a USer ACCOUNTccovvveruveiieieeresieeseenenns 44

C. OTHER FUNCTIONAL REQUIREMENTSc.cooiiiiiiiieiee e 48
1. SYSTEIM ACCESS ... ittt ettt et e et ettt et st b et e en e beesnneenee 48

2 DatabaSE ... 49

3 Local System Functionalityccccooviiiiienenesieece e 50

4 Services and ClHENTSoiviiiiee s 51

5. User INterface (UD)......cccooiiieiieeee e 52

D. NONFUNCTIONAL REQUIREMENTS. ..o 53
1 USADIIILY ... 53

2 REIIADITILY.....ooviiicecc e 54

3. o] 7 1oL 11 SO PRTPSN 54

4. SUPPOITADIIILY ..o 54

E. SUMMARY ..ttt bbbt 55
IV. SYSTEM DESIGN......cciitiiiieieert ettt sttt 57
A. DATABASE TIER ..ottt 57
1. ER DIAQram .. .cco ettt 59

2. Relational Database Schema..........cccooeviiiiniiiic e 60

a. Mapping of Regular Entity TYPesSccceveevveveiiieieeceeiene 60

b. Mapping of Weak ENtity TYPESccoovvrireriiieienese e 61

C. Mapping of Binary 1:1 Relationship TypesS.......c.cccccvevverunenne. 61

d. Mapping of Binary 1:N Relationship Typescc.ccocevennnne. 62

e. Mapping of Binary M:N Relationship Types.......c...ccccceeuvnne. 62

f. Mapping of Multivalued Attributes...........ccoocvvieiieiiiieieene. 63

B. BUSINESS LOGIC TIER ..ot 64
1. XML SCREMA ... e 64

a. StAtUSREPOITWS ... 65

b. EXplanationGetWS ...t 66

C. KbUpdate CHENt ... 70

2. Class DIAgramS........ccveiuieieieeie et re e ns 73

a. SEATUSREPOIT ... 74

b. EXplanationGetccccveveiiiiececece e 77

C. KBUPALE ... 81

C. WEB TIER ..ot b 82
1. UMD SEBIVICES ...ttt sttt sttt sttt st et sbe e 83

2. UMD CHIENT....cciiiiiie e 85

D. PRESENTATION TIERociiiiieeece e 86
1. UTWED PAJES ..ottt ne s 87

a. SION TN o 88

b. MaAIN MENUoiiiiiiieciee et 89

C. Y 0] =3 XSS T o o] o USSR 90

d. Transfer ASSEIrtION.......ccoiiiiii e 92

e. Edit ASSErtion Data.........cccccoevverieiieiiece e 94

e. Set Capability Statuscccoeiieiieiecc e 96

f. USEI ACCOUNTS ...eveeeiiieeciiee ettt et e e snen e 97

2. UL Class DIagrams.ccccveiueiieieeie e seese e se et se e 99

E. SUMMARY ..ottt ettt e tesneeraenes 106

V. PROTOTYPE......o oottt bbbttt bbbt 107
A MYSQL DATABASE ...t 107

1. STATUS ...ttt 108

2. ASSEITIONDALAocviiiiecec e 108

B. UMD OPERATIONS. ..ottt 110

1. STALUSREPOIT ... s 111

a. Setting the Status..........ccveciei 111

b. The WeD SErviCe......ccovviiiiiiieceee e 113

2. KbUpdate CHENT ..o 114

a. Storing the assertionccccceevevveve e 114

b. Updating the External Databaseccccoeveveniieiiveninsnene 116

3. EXPlanatioNnGetWS ..o 119

b. The Web SEIVICE.......cooiiiii et 119

C. USER FEEDBACK ..ottt 119

D. SUMMARY ..ttt sttt beeraenes 120

VI, CONCLUSION ..ottt bbbt sb bbb 121
A SYNOPSIS ...ttt 121

B. FUTURE WORK ..ottt 122
APPENDIX. XML SCHEMA ...t 125
LIST OF REFERENCES ..ottt sttt ne e 135
INITIAL DISTRIBUTION LIST .ot 137

THIS PAGE INTENTIONALLY LEFT BLANK

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19,
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.

LIST OF FIGURES

SCIL ArCRITECIUIE ...ttt 7
SOA AICNITECIUIE........eiiiiiieieee e e 10
REST Web service request / response (From Spies, 2008)ccccceeverreennene 14
SOAP Web service request / response (From Spies, 2008)..........cccccvevvvieennnn 15
WSDL, abstract interface desCription..........c.ccccoveveiiieiieiecic e 18
WSDL, concrete implementation description............coccooveveveiencneniseseen, 19
XED | ettt 20
D] 2 1 TSP SSS 21
SOAP MESSAQE . .ee e vteeeitiitesitte et e s sta e e st et e st e st e et e e s s e e e sbb e e e sbb e e e be e e enbeeennes 22
Domain MOEN.........ooiiiie e 27
USE CASE TIAGIAMN ...vviveerreeiiesieeieeieesteete e esre e teeseessaesteesaesreesteeneesreesaeeneesneeseans 28
StOre ASSEITION SSD......ciiiiiiiieiie et 30
User transfers assertion SSD.........ccciiiiiie i 33
User replaces assertion SSDc.occoiiiiriieienie e 36
Local user edits aSSertion SSD.........cccccvviveiirieiiieresie e 38
External user queries ExplanationGetWS SSDccccceveieeveviece e, 40
External user queries StatusSReportWS SSD..........ccocvieiiieieninee e, 42
Administrator Sets StAtUSES SSDccvvvviiriieie e 44
Modify user account (Create) SSDccevereriririniseeee e 47
Modify user account (edit & delete) SSD......ccccevievieiciiereee e, 48
Four tiers of deVelOpMENT ..o 57
Database ER diagram........c.ccocveueiieiiiie e 60
Mapping oOf regular entity TYPES......ccuoiiiiriieeeie e 61
Mapping of Weak entity tYPES........coviieiieiieieciese e 61
Mapping of binary 1:1 relationship types........cccccvveeiieiecie e 62
Mapping of binary 1:N relationship types ... 62
Mapping of binary M:N relationship types........cccocvvviveviiiciieie e, 63
Mapping of multivalued attribDULES...........cccooeiiiiiiiieee 64
XML schema StatusReportResponseMsgPartccccovevevveveccieieese e, 65
XML schema ServiceState and ServiceStatusReportcccoovvveveniienieennns 66
XML schema ExplanationGetResponseMsgPart..........cccooevveveiieieenesieennnns 67
XML schema KDASSEITIONooiiiiiiieiieeiesee e 68
XML SChema DataSOUICEcoiiiiiiiieieiesie et 68
XML schema KBCIAIMcc.ooiiiiiiie e 69
XML schema KDEVIAENCEccooiiieiieie e 69
XML schema KDSUPPOIt.........oiieiieic et 70
XML schema KbUpdateRequestMSgPart.cccovveiininiiienenc e 71
XML schema AssertionAddBUNAIE...........covieiiiiiiieiee s 71
XML schema AssertionDeleteBundlecccovveieiieineiie i 72
XML schema AssertionReplaceBundle............cccooveviiieiieii i 73
StatusReport class diagram Part Iccooceeeiieiineneee e 75
StatusReport class diagram part Icccoooevveieiieieeie e 76

Xi

Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77,
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.

ExplanationGet class diagram part ©.........ccccooeoeeiiniiinneee e 77
ExplanationGet class diagram part H..........ccoceevevieeniciesieese e 78
ExplanationGet class diagram part Hl ... 79
ExplanationGet class diagram part IV ..o, 80
KbUpdate class diagram part L............ccccoveveiieiieiecc e 81
KbUpdate class diagram part 1cooieiininieee e 82
UMD services WSDL Part |cccooveiiiiiiieiece e 83
UMD Services WSDL Part Tccoooiiiiiiirinisseeeee e 84
UMD services WSDL part H........cccooviiiiieieccseee e 84
UMD 3$ervices WSDL Part IV.......ooeoiiiiiieiene e 85
UMD CHENEWSDL ..ottt 86
Web architecture (From Booch, 2001)ccccoiieiiiiinieiesie e 87
UL WOTKFIOW ...t 88
SIgN-IN WED PAGE......ociiice e 89
Main Menu WED PAgEooiiiiiiieeee e 90
StOre @SSEITION L. 91
StOre @SSEITION Tl ..ot nae s 91
Store aSSErtioN Ilcoo e 92
Transfer @SSEITION |oiiiiiie e 93
Transfer aSSErtioN Icvoveiiiiiee e 94
Bt @SSEITION....coiiiiiiiie e 95
Edit @SSErtioN T........ooueeie et 96
SEIECT tNe STALUS.....eeueiieie i 97
USEI ACCOUNT | ...t 98
USEI ACCOUNT ...t 98
MOITY BCCOUNTcviiiee e 99
UPAALE GCCOUNL.....c.viiiiiieiieeiie ettt ettt e sneesre e e 99
U] 4T T OSSPSR 101
Y (0] (o= TS 1 o o SO SR 102
TraNSTEr @SSEITION. ...c..iiiiiiieiieie ettt nae s 103
Transfer aSSErtioN Ilcvcoviiiiie e 103
Bt @SSBITION.....otiieieiie e 104
Set capability STALUSESoiveieeie e 105
USEI ACCOUNTS ...ttt esitie ettt sttt sttt e et e e e nnb e e e nnne e e 105
MySQL Status table.........ccooiiiiiiee s 108
MySQL assertionData table.............ccocveiiiiiiici e 109
MySQL assertion-related tables............ccooviiiiniiiniee 110
EXeCUtING NPS_SCIL.JAIiiiiiieie e 111
Method call to Write the StatUSES..........cooveiiiiiiiiiiee e 112
Connection to the databaseccecvveeiieeie s 112
Status table after eXECULIONooiiiiiii e 112
Testing StatUSREPOITWSocviiie e 113
DePloyiNg UMDoouiiiiiiiiieeee et 114
SEOrING AN ASSEITION....cveiiiiiieiei et 115
Assertion in the databasecceiveiiiieiiei e 115

Figure 88.
Figure 89.
Figure 90.
Figure 91.

EXIErNAl WED SEIVETvviiei ittt 117
EXTErNAl WED SEIVET ...ttt 118
External ID inthe databasecovvviiiiiiiiii e 118
Testing EXplanationGEtWS ..o 119

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

LIST OF TABLES

Local USer StOreS @SSEITIONccveieeiiiie ittt 29
Local user transfers assertion to knowledge base.........c.ccceeevvevieveciesieenenn, 31
Local user replaces aSSErtioNcccoceeveerierienieniesie e 33
Local user editS @SSEITIONEcuiieieiiierie et 36
External user queries EXplanationGetWS.............ccovveeieene e 39
External user queries StatuSRepPOrtWS ... 41
Administrator sets capability StatUSES...........c.coeiieiieieiiieie e 42
Administrator modifies @ USEr aCCOUNTccuevvereeieiieieeie e 44
Stereotyped associations (From Conallen, 2003)ccccccevveveiiieieesiecenn, 101

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

BAA
CDM
DBMS
DMV
DTG
ER
GUI
HTML
HTTP
IDE
IARPA
JAR
JDBC
LAN
ODBC
SCIL
UMD
NPS
RDS
REST
RPC
SOA
SQL
SRS
SSD
Ul
UML
URL
wW3C
WAE

LIST OF ACRONYMS AND ABBREVIATIONS

Broad Agency Announcement
Conceptual Data Model

Database Management System
Department of Motor Vehicles

Date Time Group

Entity Relationship

Graphical User Interface

Hypertext Markup Language
Hypertext Transfer Protocol
Integrated Development Environment
Intelligence Advanced Research Projects Activity
Java Archive

Java Database Connectivity

Local Area Network

Open Database Connectivity
Social-Cultural Content in Language
University of Maryland

Naval Postgraduate School
Relational Database Schema
Representational State Transfer
Remote Procedure Call
Service-Oriented Architecture
Structured Query Language
Software Requirements Specification
System Sequence Diagram

User Interface

Unified Modeling Language
Uniform Resource Locator

World Wide Web Consortium

Web Application Extension
XVil

WS
WSDL
WWW
XML
XSD

Web Service

Web Service Description Language
World Wide Web

Extensive Markup Language

Extensive Markup Language Schema Definition

xviii

ACKNOWLEDGMENTS

Thanks to my loving wife, Elsa. Without her unwavering support and patience, |
could not have accomplished this report. I am equally grateful to my kids, who have
stood by me and made adjustments to their lives in order to accommodate my mission
here at the Naval Postgraduate School.

I would also like to extend my sincere gratitude to professors Man-Tak Shing,
Bret Michael, and Craig Martell. Gentlemen, thank you for your guidance and sound
advice.

Finally, I would like to dedicate this report in memory of my friend and former
colleague, U.S. Air Force Maj. Ken Bourland. Ken, a graduate of the Naval Postgraduate

School, passed away in the Haiti earthquake of January 2010. Godspeed, my friend.

Xix

THIS PAGE INTENTIONALLY LEFT BLANK

XX

l. INTRODUCTION

A. THE PROBLEM

In December of 2008, the Intelligence Advanced Research Projects Activity
(IARPA) released a Broad Agency Announcement (BAA) soliciting proposals for the
Social-Cultural Content in Language (SCIL) Program. The intent behind the SCIL
program is to investigate methodologies, designs, and technologies that can contribute in
the understanding of the social goals of persons or groups of people by demonstrating a
relationship between these goals and their particular language use (IARPA, 2008). By
language use, we mean their “manner of speaking” as opposed to the language itself
(e.g., Spanish, French). Anyone contributing to SCIL would be required to use Natural
Language Processing techniques to provide information to Intelligence analysts so that
they could advise high-level decision makers. Insight into the social dynamics of a group
would allow analysts to better understand the strengths and weaknesses of a group, help
identify the group’s goals and motivation, and to reduce Anglo-centric assumptions about
their behavior (IARPA, 2008).

At a later date, the University of Maryland (UMD) responded to IARPA’s
solicitation with a plan for research in identifying social goals pertaining to persuasion.
UMD subsequently subcontracted University of California at Santa Cruz and the Naval
Postgraduate School (NPS) to work on the project. Each institution involved will serve as
a performer team that will interact and contribute to the program via an aggregate system
based on a service-oriented architecture (SOA). The information generated by each
performer team will be stored into a core knowledge repository for analysts to examine

for future events.

The issue that needs to be addressed involves the design and development of an
automated system that the Naval Postgraduate School (NPS) performer team will employ.
The design of a system will describe how the software is to be constructed and is based
on the requirements set forth by the users, in this case the stakeholders of the SCIL

program. It is critical that a careful examination of these requirements be conducted and
1

validated by a UMD representative to subsequently provide our performer team with an

effective automated system to execute their component in this program. The system to be

developed must be capable of performing the following:

Allow for local access for the collection, storage, and modification of the
data to be forwarded.

Allow for remote access to the data.

Allow for the transfer of data to the external knowledge repository over
the Internet.

B. THE SOLUTION

In order to address these system requirements, our research focuses on answering

the following three questions:

1.

What are the requirements for system to be implemented by the NPS

performer team?

What is the appropriate design of a modular framework to effectively

manage the natural language assertions in a knowledge base repository
and the sharing of the knowledge via the World Wide Web?

What is the appropriate Web-service design to allow for multiple users to

update the knowledge base repository of natural language assertions from

multiple sites?

In this thesis, we addressed the first question by generating a software

requirements specification that makes use of various use cases that reinforce our

understanding of the system functionality. The specification was validated by a UMD

stakeholder. After a careful review of the system requirements, we used an object-

oriented analysis and design approach to address question number two. We developed a

preliminary design of the system as a whole using various Unified Modeling Language

(UML) notations. We also analyzed and developed a database schema required for the

local storage. Lastly, we implemented a prototype system using a Web Service
Description Language file (WSDL) and an Extensive Markup Language Schema
Definition (XSD).

C. ORGANIZATION

Chapter 1l—Background information on the concepts behind the SCIL
program, the Assertion Data, SOA, and Web Services.

. Chapter I11—Requirements specification.
. Chapter IV—System design.
. Chapter V—Case study using a prototype of the performer team system.

o Chapter VI—Summary of the thesis and recommendations for future work.

THIS PAGE INTENTIONALLY LEFT BLANK

II. BACKGROUND

A SOCIAL CONTENT IN LANGUAGE

1. Introduction

As mentioned in the Introduction, the intent behind the SCIL program is to
employ appropriate theory and to develop practical technology in order to understand the
social goals of groups of interest. IARPA identifies three dimensions of the Program to
be of utmost importance: the social features and activities of the groups; the linguistic
features that serve as evidence of social goals; and the social science theories that help
define the social features (IARPA, 2008). The central medium of analysis is the human

language and how it serves as evidence of social activity.

The following three domains of knowledge are listed in the BAA as some

examples in which any organization submitting a proposal can research:
Social Constructs and Activities of the Group / Members

. Goals, such as power, solidarity, group supremacy, religious supremacy,
actions, manipulation strategies (e.g., persuasion, coercion, threats,

intimidation, oppression, abuse, and exhortation), and recruitment

Linguistic Features and Their Form, Meaning and Strength

o Sacred language
. Conversational patterns (e.g., turn-taking; conversational cues and
markers)

Social and Cultural Themes and Institutions

. Coercion
J Recruitment
J Loyalties (e.g., family, government, land, religion)

5

The UMD team will analyze persuasion attempts to contribute to the overall
program. More specifically, the UMD performer teams will seek to provide information
to the analysts by using a multidisciplinary approach to analyze the language obtained
over an online textual-based communication system. Miller defined persuasion as “any
message that is intended to shape, reinforce, or change the responses of another, or
others” (Miller, 1980). Since the Internet has quickly developed into a primary tool of
communication, it has since served as an ideal means for individuals or groups of
individuals affiliated with terrorist organizations to express their beliefs and to initiate
persuasive dialog with the intent to either convince others to take some kind of action or
to accept some proposition or belief. There are many services and massive multi-person
online environments that facilitate online communication (e.g., Facebook, MySpace,
Twitter, World of Warcraft), providing a medium over which to influence and persuade

individuals in such a manner that would negatively affect our national security.

A Kkey supporting idea in theories of persuasion deals with research in compliance
gaining. Compliance gaining involves a situation in which one person seeks to convince
another person to do something for him/her. Marwell and Schmitt identified 16
compliance-gaining strategies. Their paper on this subject is seminal because the majority
of research up to that point was concentrated on why people complied with persuasion,
instead of how they went about complying (Marwell & Schmitt, 1967). Another key
aspect of persuasion concerns framing effects, which are different from compliance
gaining in that they are related to the way in which language is used in persuasion as
opposed to the actual decision process used in persuasive arguments. Framing effects
focus on the intentional linguistic selection a person makes in order to solicit a certain

response or choice.
2. SCIL Architecture

For UMD to accomplish their work in the analysis of persuasion, they require a
multidisciplinary approach, which includes disciplines in linguistics, natural language
processing, and communications working together in order to form an assertion based on

raw data. The raw data will be communication text found online from various social

6

forums. In the long run, the raw data will be processed at the lowest level into an
automated system that performs the natural language processing using artificial
intelligence to generate the assertions and subsequently forward the assertions to the
knowledge base. For UMD, the assertions will deal with persuasion events. Figure 1
depicts the SCIL program architecture as intended, which demonstrates UMD and other
notional performer teams. Intelligence analysts will execute queries to the knowledge
base for information about certain groups of interest without having to go through the raw
data. With the information at hand they, in turn, would advise higher level decision

makers.

advises

Analyst Decision

T Maker
Quety I Assertion

Knowledge Base Repository

Hierarchical
Relations

Persuasion

Automated
system

Automated
system

I other

Automated

system z
I e m

UMD‘

K

Raw | | : Raw | Raw .
1

' data ! data : ! data | data ;

Figure 1. SCIL architecture

Currently, the UMD team is in the prescheduled Base Period, which consists of
ongoing discussions about the content of an assertion, the definitions of language use,
and performing system prototype testing. During this testing period, the system that we

will design will allow for local UMD researchers to manually store, manage, and forward
sample or real assertions into the repository. The next sub-section describes the current
agreed upon contents of an assertion.

3. Assertions

Assertions about groups of interest are what the analysts will query from the
knowledge base. An assertion is defined as a declaration about something with or without
facts. One can assert that the sky is green, or even that computers can talk, but without
any evidence or support those assertions are meaningless. For our purposes, we will

further define an assertion to be made up of the following three elements:
a. Claim

A claim is what the assertion is about. It contains a proposition about
social phenomena in conjunction with a qualifier that reflects inherent uncertainty. The
claim is based on and substantiated by language use. For example: “Phillip is a well-

established leader of the group.”
b. Evidence

The evidence serves as the basis from which the claim is derived.
Evidence is composed of sets of statements about social-linguistic features and/or social-
cultural phenomena exhibited by the core data. For example: “90% of the topic
discussions are initiated by John or “Phillip is often referred to as sir.”

C. Support

Support is the rationale for asserting the claim based on the evidence.
Support is an explanation, contextualization, and framing of the claim via one or more
context statements. For example: “People who initiate discussions are typically leaders,”
or “Men that are referred to as ‘sir’ are well respected in their culture.”

While we do expect that the definitions and concepts behind the generated

assertions to evolve, our proposed system, along with the system tasked to perform the
8

natural language processing, will serve as a component deployed in a service-oriented
architecture (SOA). The SOA architecture will utilize Web services communicating
between UMD teams and the SCIL program repository. Section B describes the

background of SOA and section C will provide information on Web services.

B. SERVICE-ORIENTED ARCHITECTURE

1. SOA Introduction

The purpose behind SOA is to allow for an enterprise to efficiently build
applications that provide a service or processes to users while overcoming distributed
computing challenges (Papazoglou & van den Heuvel, 2007). The impetus behind SOA
has been the limited and complex nature of an organization’s legacy IT architecture and
its inability to implement solutions in support evolving business goals. More so, it is the
lack of integration between an organization’s internal IT systems and their business
processes, business partners, and customers that is the driving force for change from the

current system architecture to one that is service-oriented (Marks & Bell, 2006).

SOA is a term that represents a model or a design in which automation logic,
which seeks to provide a solution to a given concern, is decomposed into smaller, self-
sufficient, and distinct units of logic each of which contribute to the completion of the
overall function (Erl, 2005). These decomposed units of logic, known as services, can
range in size and scope. SOA, in and of itself, is not a technology. The key behind the
SOA concept is that the services must be self sufficient. By avoiding inter-dependency,
each individual unit can evolve on its own (Erl, 2005). The basic method in which an
SOA looks to provide benefit is through the separation of concerns, decomposition if you
will, to allow for smaller entities to complete their respective functions in order solve the

overall concern.

The theory behind the separation of concerns, which Dijkstra references in his
manuscript EWD 447: On the role of scientific thought, claims that there are benefits in

decomposing a large problem into a set of smaller individual concerns where each

9

individual concern is addressed by a unit of logic (Dijkstra, 1982, pp.60-66). Object-
oriented programming, as an example, implements this concept with its use of objects,

classes and components.

Ideally, the services in a SOA should not only be aware of other services but be
able to communicate with them. The services utilize what is called a service description
to identify, locate, and manage the communication between services. The communication
between the services takes place via a framework called messaging. Each message while
underway from service to service is also self-sufficient and not dependent on anything
but itself (Erl, 2005).

So far, what has been described is the basic architecture of what SOA is about.

Figure 2 provides a visual representation of the basic architecture thus far.

\\i//—’ .‘ Message \

\ | Service |
e B
Description ,
of -

Service B

Figure 2. SOA architecture

Erl provides us with a simple analogy of the concept behind SOA, comparing it to
a business community. Every city has some business community that consists of entities
ranging in size from a Wal-Mart to a local mom and pop store. These businesses provide
services to us as consumers, similar to how the units of logic (services) from a system
perform a function and, if you take the business community as a whole, it seeks to solve a
particular demand, much like how the automation logic provides a solution for an overall
concern. The services still have certain established regulations that must be followed. In
SOA, these regulations are the principles that drive service-orientation (Erl, 2005).

Continuing with the business community analogy, the analogous regulations in place

10

could consist of a common currency that must be used for a transaction or even a
common language that must be spoken. The services follow a set of common service-

orientation principles through a process.
2. Principles of SOA

The following are commonly accepted principles of service-orientation as
described by Thomas Erl:

a. Services Are Reusable

Reusability benefits by reducing the need for future development efforts.
An analogy would be similar to how the Department of Motor Vehicles (DMV) services
all requestors for a driver’s license, but an even more reusable service would be a DMV

that distributed licenses to users of all types of vehicles (ground, rail, aviation, boat, etc.).
b. Services Share a Formal Contract

Similar in concept to how a consumer would need to fill out an application
for the wvehicle license mentioned above, the contract defines the service, the

operations/activities, and the messaging that are required to consume the service.
C. Services Are Loosely Coupled

Loose coupling facilitates agility. The factors that influence change in an
IT environment are external, and so it is important that the underlying logic behind the
individual services be independent. After we have waited in line, filled out our
application, and taken the test at the DMV, the responsibility is on the DMV to process

and provide us with the license.

d. Services Abstract Away Underlying Logic

The details (underlying logic) that make the service work are hidden, and
of no concern to the user as long as the service works. Not many people know or care

exactly what the DMV does in order to process their request for a license.

11

e. Services Are Composable

Composable means that services can have subservices. A service-oriented
process is one that has a parent process in which it calls its underlying services to perform
a subfunction. This principle reinforces reusability. The local law enforcement agency

would require the use of the new DMV to license their drivers as well.
f. Services Are Autonomous

Autonomy allows for self-governance of all its processing, which
subsequently allows for a service that is free from any dependencies that would restrain
its deployment and evolution (Erl, 2005). Let us assume that the new DMV requires a
background check on people applying for a license. The DMV normally delegates that
task to another agency, and is dependent on their results. If the DMV were to perform its
own background check, this independence would allow for the DMV to evolve its

services without being held back by a dependent functionality.
g. Services Are Stateless

If a service is tied up by managing information, it reduces its own ability
to receive other requests from other requestors. A stateless service promotes reusability
and scalability by forwarding the message received and forgetting that it ever had the
message, let alone what it was about. A services state is dependent on how well-designed
the indiviual operations are, and how they function. The self-sufficient messages
mentioned previously support statelessness. After completing the processing for an
applicant’s license, the details behind the application are saved in a database and there is
no reason for the DMV to linger on your request. By doing so, it would inhibit the ability

to service other applicants.

12

h. Services Are Discoverable

Discoverability prevents redundancy in service development. A discovery
mechanism should be in place that enables potential clients who need your service to
locate and consume it. The DMV information (location, phone number, etc.) can be
found in the yellow pages, the Internet, or even signage on the highway, which is how we
know to go there to begin with.

3. Benefits of Using SOA

We have vaguely touched on the benefits of using a SOA for any particular
organization. Not all organizations require a change or, specifically, a shift in
architecture, but for those organizations that are finding it costly to make changes to their
current IT structure in response to a dynamic business environment, an SOA solution
may be worth exploring. SOA provides developers with a means to overcome many
distributed enterprise computing challenges, such as application integration, transaction
management, and security policy enforcement, while allowing the concurrent use of
multiple platforms and protocols and leveraging numerous access devices and legacy
systems (Alonso et al., 2004).

Depending on how it is used, the benefits of SOA relate to the aforementioned
principles and include the following: the costs of integrating your applications will be
reduced, your returns on investment will increase due to the reusability principle, a
reduced processing overhead and reduced skill-set requirements are experienced due to
the services being composable, the need to replace legacy systems is reduced, which in
turn saves money, the use of a standardized language like Extensive Markup Language
(XML) reduces the cost and efforts of application development, and the costs involved in

responding to changes via external sources are also reduced (Erl, 2005).

13

C. WEB SERVICES

A Web Service (WS) is defined by the World Wide Web Consortium (W3C) as:

A software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the
Web service in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards. (W3C, 2004)

Basically, a WS is a method of implementing a distributed system, which allows for
objects on one computer to interact with those of another computer over the Internet.
There are currently two prominent models used for creating Web Services: the
Representational State Transfer (REST) model and the SOAP-based model.

1. RESTful Web Services

RESTful WS allow for access to resources on a network referenced via a Uniform
Resource Locator (URL). REST uses HTTP as the primary transportation protocol to
support the execution of one of the four methods: GET, PUT, DELETE, and POST.
REST services have limited support, in that REST has no standardization, few toolKits,
and little by means of software library support. Message exchange can be performed in
various formats (e.g., XML, HTML). Figure 3 shows an example request and associated

response for a RESTful service.

HITFE/1.1 200 Ok
Content-Type: text/xml; charset=utf-8
Content-Length: nnn

GET /StockPrice TBM HTTFE/1.1

Host: example org =2xml version="1.0"7>

Accept: text/xml 3 =g OQuote xminz: =="http//example org/stoclk-
- o 1 L=

Accept-Charget: utf-g service’

<g:TickerSymbol=IBM=</z: TickerSymbol >
<gStockPrices=45.25</a:8tockPrice>
</3:0uote

Figure 3. REST Web service request / response (From Spies, 2008)
14

2. SOAP-Based Web Services

SOAP is the accepted standard method of communication between computers
over the Internet that specifically uses XML to represent the information passed. SOAP is
supported with toolkits and various software libraries. The earliest version of SOAP,
version 1.1, was adopted by the W3C after its submittal in May of 2000. SOAP, which
once stood for Simple Object Access Protocol, is currently in version 1.2 and is based on
messages taking the form of documents. The encoding behind the request and response
operations of SOAP WS is in XML format and the network transportation protocol can
be by any means (e.g., IBM MQSeries, MSMQ, or SMTP) but the most common
protocol is HTTP. For this research, we will focus on SOAP-based Web Services. Figure
4 shows an example request and associated response for a SOAP-based service.

GET /StockPrice HTTP/1.1 HTTP/1.1 200 OK
Host: example org Content-Type: applicationfsoaptzml;
Content-Type: application/zoaptzml; charset=utf-8 charset=utf-8
Content-Length: nnn Content-Length: nnn
<Tuml version="1.0"7> <Tuml] version="1.0"7>
<env. Envelope zmlnzienvy = "hitp: Mwww w3 orgl 200305 <env. Envelope zmlns env="http: fwww w3 orgl 2003 /05 fzoap-envelope "
soap-envelope” xmlns s="http fwww example orglfstock-service ">
zmlns: s="http fwww example. orgfstock-service"= =env.Body=
<env;Body> =g GetStockQuoteResponse>
<5 GetStockCuote> <z StockPrice>45.25</s StockPrice®
=g TickerSymbol =IBM=/s: TickerSymbol> <fz:GetStockQuoteBesponsze>
iz GetStockQuote= =fenv:Body>
=fenv:Body> <fenv: Envelope=

<fenv:Envelope=

Figure 4. SOAP Web service request / response (From Spies, 2008)

3. Web Service Components

As mentioned previously, SOA consists of units of logic known as services that
require a means either to locate other services or to advertise services. SOA also supports
a means of communication that would enable interaction between services. In this

section, we will elaborate more on each component that makes up a WS.

15

a. Services

A WS can be classified as being temporary or permanent, depending on
the function that it assumes during runtime or its application logic. The basic service
roles a service plays are that of a provider, intermediary, and a requestor (Erl, 2005). In
the requestor role, the service will initiate the transmission of a message requesting a
particular service of which the provider was designed to execute. The provider will
execute the request and respond to the requestor. As an intermediary, the service will
process a message, performing its own functionality, and forward the request to its
service provider. Some functions an intermediary service can perform are authentication

services, auditing services, and management services (Irani, 2010).

Services based on the nature of the application logic in which the service
is intended to perform are classified as service models. For example, a service can be of a
Business type (e.g., Accounts Payable Service) that executes one of many operations
required by an organization, a Utility type (e.g., Internal Policy Service) that is
completely reusable and non-application specific, or a Controller type that would be
responsible for the coordinated functionality of all of the services within an organization
(Erl, 2005).

b. Description

In order for services to interact, they first need to be aware of each other.
Specifically, a provider needs a formal description of its services. The description acts as
a contract with clients who request the provider’s service. A W3C standardized WSDL
document serves this purpose. WSDL is defined as:
An XML format for describing network services as a set of endpoints
operating on messages containing either document-oriented or procedure-
oriented information. The operations and messages are described

abstractly, and then bound to a concrete network protocol and message
format to define an endpoint. (W3C, 2001)

16

The WSDL file is also written in XML and describes the data that will be
passed and the method that passes it regardless of the programming language used. This
means that a service written in Python can be consumed by client created in Java.

Although a WSDL is subdivided into several sections, it is generally
composed of two key components: an abstract interface description (i.e., operations,
operation parameters, and abstract data types) and a concrete implementation description
(i.e., a network address, a protocol, and concrete data structures; Zimmermann,
Tomlinson, & Peuser, 2003), the latter of which provides the means to actually invoke
the service. Let us briefly look at the main elements found in a standard .wsdl file. The
text and sub-tags within a .wsdl file are encapsulated inside of a <definitions> element
and from top to bottom the five main elements within are: <types>, <messages>,

<portTypes>, <binding>, and the <service>.

. <types>—This element includes the abstract information set using an
XML Schema that defines the data types used in the communication
process between the service provider and the requestor. If there are an
excessive number of data types described, the schema can be imported

into this section as a separate document.

. <messages>—The message element defines the abstract content of the
messages to be communicated. The content includes the name of the
message part (what the message is called), the element attribute that refers
to the XML schema (what the message is), and the type (the type of data it
holds).

. <portTypes>—The port type element identifies and describes a specific
service interface. It is a named-set of abstract operations and their abstract
messages that come in two varieties, input and output. The operations are
made up of the messages described in the messages element.

o <binding>—The purpose of the binding element is to connect the abstract
port type description to a concrete service implementation. The protocol
details to send the messages are defined here.

17

. <service>—The service element, which is also known as the endpoint,
specifies where and how to send the information. The service element
works with the binding element by connecting a port type to a particular
port defined within the service element.

Figures 5 and 6 are excerpts from two WSDL documents entitled
stepGovServices_12.wsdl and stepPortTypes _12.wsdl (Tong, 2009). These files are

referenced again in Chapter IV.

<wsdl-definitions>

swsdltypas> N Schema is imported.

<xs schemaz /

: <ysimport namespace="http/fwww. iarpa gowSCIL/STEP_Schema” schemal ocation="stepSchema_11.xsd™/>
| SRmanHm Mame of XML Schema
<fwsdllypas=
<wsidlmessage name="KblpdateRequest™ —
! =wsdlpart name="updateRequest” slement="stepd:KblpdateRequastMsgPart"/>
<fwad! messages
<wsdl message name="KhlpdateResponse™
i <wsdlpart name="updateResponse” slement="stepd-KblUpdateResponseMsgFar™/>
<fwsdl message> L Message
<wsdlmessage name="31atusReportReguest”> elements
| <wsdlpart name="statusRlequest" slemeni="stepd:StatusReportRequestMsgPart"/>
<fwsdl-message=
<wsdl message name="StalusReportResponse™=
! awsdlpart name="statusResponse” element="stepd: StatusReportResponseMsgPar />
<fwsdl. message> =
=wadlportType name="KbUpdatePonType > -
P oeysdl operation name="KhlUpdate™>

| awsdlinput message="steps:KblpdateRequest™/>

<wadloutput message="steps KblpdateResponsa'f>
i =fwedloperation=
<fwsdl portType>
<wsdl port Type name="StatusReportPorType ™
{ <wsdloperation name="StatusRepon">
=wsdlinput message="steps: StatusReportRequest’/>

i awsdloutput message="steps StatusReportResponse™/>
1 =fwsdloperation=
<fwsd| portType> -

— TortTypes

Figure 5. WSDL, abstract interface description

18

<wedl hinding name="KBUpdateSoapSinding” {ype="steps KbllpdateParTypa > —

=soap1d |:|||'.|‘.=':-.:J slyla="document” lranspart = hitp Yschemas xmisoap u-cg.-'s aaphtip™/=
<wsdf operation name="Kblpdate™>
<soapl2.operaticn seaphctien="kbUpdate™ soapActionRequrad="true" style="document" />
<wisdlinpul>
| =soapld body use="literal =
<hwsdlinput=>
cwsdl output>
<g0ap12-body use="literal"i>
<wsdl oulpul>
<iwsdl oparaton=
<fwsdl-bindmg»
<wsdl hinding name="5talusReportSeapBinding” type="steps-StalusRepotPor Type">
exoap1? bindag slyle="documant” lranspan ="htlp(schema s xmlsoap orglsoaphitp™>
<wsdl operation namea="5tatusReport™>
<sgapl2:operaticn seaphction="stalusReport” soapActionRequerad="tue" style="document" /=
i =wsdkinpui>
=soapld body vae="literal >
<hwsdlinput=
=wsdl outputs
<goap 12-body vse="literal />
<hwadl output=

<iwsdl operation=

<fwedl binding> -l
<wedl serdce name="UMD_KbUpdate™ = iy
<wsdl poll name="KblpdatePortType” bindng="steps KBUpdateSoapBinding >
<50ap1d-address location="hitp: Mocalhost: B0B0MUIMDSCILAUMD Kbllpdste"r=
<fwsdl:poat>

<hwsdlsepice >
<wsdl sendce name="LIMD_StalusRepon™>

Binding
—
clements

Service
=

<wsdi port I"'il:rIP="SI.HII,IS.HP'WI'I;:'MTYW" '.|||'::":|:|= "staps 51.a|:|,|sRapur'.$-qapH|ndm-g"=- l."].('l.“. TS

| «soaplZ address location="http:localhost BOBIAUMDSCILAUMD_StatusRepodt /=
<iwadl|-post=
<twadl senace>
<hsdl dehrwhians=

Figure 6. WSDL, concrete implementation description

C. XML Schema (XSD)

An XSD is a model document that defines the structure of a separate XML

19

document. The XML document will contain a reference to the XSD that defines its
structure. much like how the schema is imported to support the WSDL document in
Figure 5. The schema’s syntax is entirely in XML, and it serves to validate the XML
document’s adherence to the schema’s structure. An XSD can contain several subordinate
element types, similar to a WSDL, and tends to be very complex. However, some of the
basic elements that you will find in an XSD are: <elements>, <attributes>,
<simpleType>, and <complexType>; all of which serve to define the text data as strings,
integers, dateTime, or data types. Figures 7 and 8 are excerpts from an XSD named
stepSchema_12.xsd (Tong, 2009).

<xselement name="KblpdateRequestisgPart">

l <xs.annotation> This element consists of two main
i <xgcomplaxType>

| s oaipenons elements Meradata and Payload
i 1]

i | <xzelement name="Meladata’> €

[<xscomplexTypes

i 'R'X.S SBqUEﬂE&?‘

| =xselement name="Messageld" type="xs string">
i exs-annotation=

| <lys:elsment>

. =xs-element name="Teamld™ type="stepd Teamid"> Meradara: Consists of a Message 1D
' | <xs-annotations that 12 #hing sl a Teawie £O hat 12
| <lxs.element> detfined further along mn the xad.

5 <ins sequence>

f «fxs.complexTypes
<fye-alamant>

<X alement name="Payload"=
i s complexTypes

| | <xs:choice>
«xs-element name="AssertionAddBundle” type="stepd: AsserdionAddBundle”/>

| =xs-element name="AssertionReplaceBundle” type="stepd AssertionReplaceBundle™/>
i | | <xs-element name="AsserionDeleteBundle” type="stapd AsserionDeleteBundle"/>

. i <fschoice>

| </xs complexType> Paylead: Conzists of an ophion of one of three
| ﬁm alement> Bundles: Azzertionddd, AzzertionRBeplace. and
| </xs:sequence> AszerhonDelete of wlnch are also defined witlin
</ys:complexType> the xad.
<fxs element>

Figure 7. XSD |

20

=xsmmpleTypa name="Teamld"™>
<xE Annolatlion>

<xg:documentation=>Type that enumerates the Pedormer team IDs.</xs documentations

<fis_annotation> .

“xXEresinclion base="xs stong”>

| s enumeration value="BEN">
| exs enumeration value="COL" >
<35 enumeration valug="LCC" >
| =xs:enumeration value="SRI"=
| =xg enumeration value="LIMD" >
| <xa enumeration value="UVIA" >
| <xsenumeration value="GOV"/=
<fxs resinction>

<hug simplaTypa>

Assertion AddBundle contams a
zet of sub-elements az well
meluding Payload whicl 1= alzo
defined zomewhere m the x=d

s Team ID i restricted to be one of the several tvpes of
| <xs-snumeration -ralue=".ﬂ..3u"f.--k_// Ll histedd, that ave basically shings

oy complexType name="AssationAddBundie"=
i =x5 annofabion>
| s sequences
| | =xs-element name="Maladata™>
xg complexTypar
b N SRgQuUEnCEs
<wgalament name="AssartionCour "~
| was annolation>
| =uspimplaTypes

| exETnestnotion Dase="xalinteger =
|

| i <x 5 minlnclusie value="1">
| =iEsresincbons
| eixg sumplaType:>
<ixg alemant=
! inE BRenCE>
| afesoomplaxTypes
| s element
x5 alemani nama="Paylnad =

| cesccomplexTypa=

b ExSTEAGUEnCES
| I s element name="Assartion” tyoe="stepd: Kbdssetion”

\ : ! [} <as annolation=
N <ixs alamant =

11 : | i e guenc e

| <hxscomglexTypes=

s elgments

: <INE SRGUENCE

g complexTypes

maxliccurs="unboancen >

Figure8. XSD Il

d. Messaging

The communication protocol shared between services is the standard
HTTP application layer used by clients and servers over the Internet. However, since the
communication between services is message-based, the framework used should be
standardized, flexible, and highly extensible (Erl, 2005). The SOAP messaging
framework meets these requirements. A SOAP message contains the following elements:

<Envelope>, <Header>, and <Body>.

. <Envelope>—The header is a mandatory element that acts as a container
for the header and body elements. This element defines itself (an XML

document) as a SOAP message.

21

. <Header>—The header element is optional and provides a means to pass
any kind of additional processing or control information to recipients of

the message.

o <Body>—The body is mandatory in that it holds the actual SOAP

message intended for the service provider.

Figure 9 demonstrates a basic example of a client service requesting a
connection identification number by sending a SOAP message containing a user name
and password. The service provider responds to the requestor with the connection

number.

Edit Project XML DTD/Schems Schemedesign X50UMHQuery Authentic DB Comvert View
D @S 1BE o AEh EEd v 908 BOBE ¢
4 S «S0AP-ENV Envalope xmins: SOAP-ENV="hitp:l/schemas xmisoap. org'soap/emelope)
I= wrming: esi="hitp v wi.ong 200 1MLSchema-instance™ xming xad="hitp fwww. w3 o

<SOAP-ENV Body>

| <m:connect xmins m="urn:exist">

' <museng>admin</muserld>

< password> password </im password>

| </mconnect>

<ISOAP-ENV Body>
- <fSOAP-ENY Envelopas

WO B0) U ke L RS

= ¥ By A8 DRl ¥V s [
1 ersion="1.0" encoding="UTF-8"7>
2 —<soapemv.Emvelope kmins soapem~="hitp-/fschemas xmisoap.org/soap/enved
hitp:fiwww w3.0rg/2001XMLSchema-instance ™
3 & =soapenv.Body>
= : <connectResponse xmins="um:exist™

<connactRetum>7 135854 </connectRetum>
</connectResponse>
=fspapenv.Body>
<ispapenv Emvelope>

Figure 9. SOAP message

22

D. SUMMARY

This chapter began with an overview of the SCIL program intended to identify the
social goals of a group of interest and its members by analyzing language features. UMD
has proposed a research supporting the program that involves addressing the social
phenomenon of persuasion. UMD will conduct a multidisciplinary approach to analyze
the language and its use to determine if the intent to persuade is present. In order to make
this happen, online text dialogue needs to be collected and analyzed to create assertions
identifying persuasion attempts. These assertions must be processed by a system capable
of performing the following: collect, modify, and locally store the data, allow for remote
access to the data, and allow for the transfer of data to the external knowledge base
repository over the Internet. We also covered some of the background on SOA and its
benefits and we finished the chapter with a discussion on Web Services along with their
common protocols (i.e., WSDL, XSD, SOAP). In Chapter IlI, we will address the key

features and requirements necessary for the development of our proposed system.

23

THIS PAGE INTENTIONALLY LEFT BLANK

24

1. SYSTEM REQUIREMENTS SPECIFICATION (SRS)

A. OVERVIEW

A software requirement is defined as a “software capability that must be met or
possessed by a system or system component to satisfy a contract, standard, specification,
or other formally imposed documentation” (Leffingwell & Widrig, 2003). The
methodology used to derive the following requirements for our proposed system were
based on a face to face interview with a SCIL representative and an agreed upon set of

use cases to describe the general system functionality.
1. Purpose

The purpose for this SRS is to determine the functional and nonfunctional
requirements necessary to effectively store, process, and transfer assertion data generated

by the local UMD performer team in support of the SCIL program.
2. System Perspective

This software is a new and self-contained product that is a separate component of
a larger system design that includes other performer clients and services from various
learning institutions and a central application server that provides a WS endpoint. Other

performer systems will interact with the application server in the same way.
3. System Features and Domain Model

The major features of this system include two Web services: one that will display
a local service status when queried by an external client; and another that will allow for
an external client to retrieve assertion data, a WS client that will be capable of updating
the external knowledge base, a software application that will be used to manage the
assertion data and services, and a database used to store the data. All of the
aforementioned features and interfaces will be written in or interact with the JAVA
programming language.

25

Figure 10 is a domain model, which displays a visual perspective of the concepts
relative to the proposed system. The local users will use the system to create assertions to
be stored locally. The assertion text is composed of a claim, evidence, and support data.
The assertion text combined with a local system-generated assertion ID (local ID), and
IARPA’s external system-generated assertion ID (external ID), and a date and time group

(DTG) form a knowledge base assertion that is stored locally.

Our system will deploy two Web services: ExplanationGetWS and
StatusReportWS. The ExplanationGetWS will allow for clients to retrieve assertion data
from the local system. Our system will also execute one WS client: KbUpdate client.
KbUpdate client will interact with the external system’s WS to transfer, replace, or delete
assertion data. Our KbUpdate client and ExplanationGetWS will have a status associated
with them that will be returned in response to queries to the StatusReportWS. The core
operations will be explained in more detail in Chapter IV. Both Web services will be
deployed on an application server that will allow for their consumption by the external
system. The domain model also depicts a DataPush client. The purpose behind the
DataPush client has not been agreed on by the UMD stakeholders at this time; therefore,
aside from its place in the domain model, this research will not include the DataPush

functionality.

26

Get_Explanation Check_Status Knowledge Base DB
1
T I y ‘
e {7 EG Status
ik Query Submits a External System / User
1 1 1
A
Local Users 0. — ¢
1 ExplanationGetWS
Applicption Server 0.
NPS/UMD Team i W g Status
Generate.. S 0.3
Deploys__ 7\ StatusReportWS ZAY
g i 1
" Claim HMI'LMI System| !
10 = 1 Uses
Generates
' DP Status
Sy ‘ . o WS Client
1 Generales Exacutes
1 ! ﬂ 1
LocallD DateTimeGroup DataPush Client
1 1 ,)
Assertion Te y . . with
KbUpdate Client
vl Local database Bd
0 ExternallD KB Assertion coiiip 1
— Bk o 1 | , !
i 1. Sends lhe ‘
[KBU status
Figure 10. Domain model

4. Intended Audience

This SRS is intended to be read by the local users and project managers who
represent the UMD team in support of SCIL.

B. FUNCTIONAL REQUIREMENTS

This section begins the description of the system features utilizing several use

cases that serve as functional requirements. The use cases are scenario-driven, meant to

provide us with both an outside-in view of the system functionality, and a critical tool in

the analysis process. Figure 11 is a use-case diagram, which introduces the system actors

27

and their respective interactions with the system. The elements listed under UMD System
represent the individual use cases, and will be explained in more detail. As a reminder,
the local users will be replaced by an automated system that creates the assertion from the

input of raw data in the future.

Following each use case, we have provided a system sequence diagram (SSD). An
SSD is “a picture that shows, for one particular scenario of a use case, the events that
external actors generate, their order and inter-system events” (Larman, 2005). The point
behind the SSD is to identify the particular events that will transpire during execution

giving us a clearer picture of the system behavior.

UMD System
Loeal Users -~ User stﬂﬁ;-%-"“\
?if ~.___ assertion External
b | = T System
I\%_.'#g s ~ User transfers .
AT *--u_,____assertimi____F.fx ~

—TUser replaces . /,,/’

Administrator *H.,__ Jﬁsertu}ll i

—~

|

®.

—

T User edits
s " !
T iu;srrtu.nl i

e —

~ Administrator ™,

-)
- modifies account -

- -

Local
Vorkstation
and Database

=Y RSt

e
e ,-"'H-’_F_T - : S ---h'_"u.,_\
":-, : .ﬂu‘imln!hlmlur sels X Extoiial ice
e ﬁ . service status
= - s

‘ |}r"

B @
\(ﬁjd—i—[—ﬂ—ﬂ quer_i;:-"‘“x"//'f% : e

- ExplanationGet -

par=r .

" User queries ™.

“. StatusReport -

—— e

Figure 11. Use case diagram

28

1. Local User Stores Assertion

Table 1.

Local user stores assertion

Primary actor

Local user

Stakeholders and

interest

Local user wants to store the assertion in to the local
database.

External user needs the assertion to be accessible.

Entry conditions

The local user workstation needs to be operational.
The local user has already logged in.

The local user can access the assertion text via the
local workstation.

Exit conditions

The assertion has been assigned an external ID.

The assertion is stored within the local database.

Main scenario

© N o O

The system displays a menu option, which includes the
option to store the assertion.

Local user selects the option to store assertion.

The system displays an interface that allows for the
manual entry of the data along with the option to store
the assertion.

Local user manually enters the assertion data into
provided text fields.

The local user selects the option to store.

The system generates an local ID for the assertion.
The system generates the DTG for this instance.

The system stores the assertion, respective DTG, and
local ID into the local database.

The system displays the local ID to the user along
with a message stating that the operation is complete.

e The User repeats steps 2-9 until complete

29

10.

The local user logs off of the workstation.

Extensions

*a.

4a.

Workstation System failure:

1. The local user restarts the system and logs in.

2. The system assumes its state prior to step 1 in the
main scenario.

3. The local user re-attempts the storing process
Invalid input:

1. The system displays an “invalid input error” message
stating that the data entered was incorrect.

2. The system returns to the state at step 3 in the main

scenario.

Local User Stores Assertion

Local User

Application localDatabase

|
]
]
|
]
1
]
]
]

Enters
data

?\.u.-un.-.-.u.-u_.l_.l_-..l_u_u-

getLocallD()

getDTG()

e e I T —————

showMessageDialog() |
|
|

Figure 12. Store assertion SSD

30

2. Local User Transfers Assertion to Knowledge Base

Table 2. Local user transfers assertion to knowledge base

Primary actor

Local user

Stakeholders and

interest

Local user wants to transfer an assertion from the local
database to the external system/database.

External system stores the assertions

Entry conditions

The assertion data has been previously stored within
the local database.

The assertion data is assigned a local ID.

The local and external systems are operational.

The local user is logged in the system and is on the

main menu.

Exit conditions

The assertion has been successfully transferred from
the local database to the external database.

An external ID is returned to the local user and stored
in the local database.

Main scenario

The system displays a menu option, which includes the
option to transfer assertion data.

The local user selects the option to transfer an assertion.
The system displays an interface that allows the user to
select the assertion(s) that will be transferred

The local user selects the assertion(s) and then selects
submit.

The system initiates a query to the local database for
the assertion data using the local ID as reference.

The system makes a copy of the assertion data.

The system executes the KbUpdate client system by

sending the copied data over the internet to the

31

external system.

8. The external system redirects the data to the external
knowledge base for storage.

9. The external system returns an assertion external 1D(s)
to the sender.

10. The local system receives and displays the external
ID(s) to the local user.

11. The system stores the external ID in the local database.

12. The system returns the local user back to the main
menu.

e The User repeats steps 2-12 until complete.

13. The local user logs off.

Extensions 4a. Invalid identification number:

1. The system displays an error message stating that the
identification number entered was mal-formed or
non-existent.

. The system returns to the state at step 3 in the main
scenario
7a. Network failure before the assertion reaches the
external database:
. The local system displays an error message stating
that a connection was not completed.
. The system returns to the state at step 6 in the main
scenario prior to the transfer attempt.
%a. Network failure after the transfer and before the

return of the external ID.

. The system displays an error message stating the

network condition.

. The system returns to the state at step 6 in the main

scenario prior to the transfer attempt.

32

User Transfers Assertion Scenario

Lol Lisar Application | LocalDatabass Exteinal Database
T —
i |
I I

External Syalem l

starilpdate]) o
= showOptionDialog()

Selacts i
‘fransfar rezdlinefaplion) |

= createdssartionLizt])

> showMessageDialog)
message

Selacts :
assarions iranslanflistOflds)

createRequest(}
createPaylnadi)

Loop getAsserion(lEiOfds)

|
I
|
|
1
|
I
I
|
|
I
I
I
I
i
I
I
I
|
|
I
I
|
|
I
I
I
I
I
|
I
|
|
s
'r&‘.urnll:lf.]

EE I
|
I
l
I
|
I
I
|
|
|

e il
_— setPayload(assertions) |
sendReguestipaylcad) .
___exemalld___ | | payload
externalld, msg
______________ :
|
Figure 13. User transfers assertion SSD
3. Local User Replaces Assertion in the External System

Table 3. Local user replaces assertion

Primary actor Local user

Stakeholdersand | e Local user wants to replace an existing assertion in the
interest: external database with one from the local database.

o External System stores assertions.

Entry e The assertion data has been previously stored within

conditions: the local database.

33

The assertion data is assigned a local ID.

The assertion to be replaced has been assigned an
external ID and that ID has been stored in the local
database.

The local and external systems are operational.
The local user is logged in the system and is on the

main menu.

Exit conditions:

The old assertion has been successfully replaced by the
new assertion.
An external ID is returned to the local user and stored

in the local database.

Main scenario:

10.

The system displays a menu option, which includes the
option to replace an existing assertion in the external
database.

The local user selects the option to replace an
assertion.

The system displays an interface that allows the user to
select the assertion that will replace the assertion in the
external database.

The local user selects the assertion.

The system displays an interface that allows the user to
select the assertion that will be replaced.

The user selects submit.

The system initiates a query to the local database for
the assertion data using the local ID as reference.

The system makes a copy of the assertion data.

The system executes the KbUpdate client by sending
the copied data and the external ID of the assertion to
be replaced over the internet to the external system.

The external system redirects the data to the external

34

database and replaces the assertion referenced by the
external ID storage with the new assertion.

11. The external system returns a new assertion external
ID assigned to that assertion to the local system.

12. The local system receives and displays the external ID
and a message to the local user indicating the
operation is complete.

13. The system stores the new external ID in the local
database.

14. The system returns the local user back to the main
menu.

o The User repeats steps 2-14 until complete.

15. The local user logs off.

Extensions 4a. Invalid identification number:

9a.

1la.

1. The system displays an error message stating that the
identification number entered was mal-formed or

non-existent.

2. The system returns to the state at step 3 in the main

scenario.
Network failure before the transfer takes place:
1. The local system displays an error message stating
that a connection was not completed.

2. The system returns to the state at step 6 in the main

scenario prior to the transfer attempt.
Network failure after the transfer and before the
return of the new identification number:
1. The system displays an error message stating the

network condition.

2. The system returns to the state at step 6 in the main

scenario prior to the transfer attempt.

35

Selects
‘raplace’

Selects
assarions

User Replaces Assertion Scenario

I r| Apalication External Database
I

I

I

I startlipdate() o
| "

|

. opuon . |
I
readLinefoption) |

i IMREMACE
replace(localll, extemallD) |

I

|

|

I

I

)

|

[}

|

| =y i
I tisiblel] [
I _ interface =2 SRRl :
I

i

I

I

I

)

)

I

I

|

Extemal System

—_—createRequashi)
craatePaylaad)

gethssertion|lacallly)

i e e D -

assertion

setPayload{assertion,
axtarnallD)}

replaceCid() -

ayload

I
I
I
I
I
sendRegquest{payload) |
I
I
I
I
I
I

externalld returrl D) !

o i o i el s it s el et e C S Lt S R

___=showhessageDialogl()

Figure 14. User replaces assertion SSD
4, Local User Edits Assertion in Local Databas
Table 4. Local user edits assertione

Primary actor

Local user

Stakeholdersand | e

Local user wants to ensure that the data stored in the

interest: local database is updated correctly.
Entry e The assertion data has been previously stored within
conditions: the local database.

The assertion data is assigned a unique identification

36

number.
The local system is operational.

The local user is logged in to the work station.

Exit conditions:

The data within the local database has been updated

successfully.

Main scenario: 1. The system displays a menu option, which includes the
option to edit a locally stored assertion.

2. The local user selects the option to edit assertion.

3. The system displays a prompt for the user to enter an
assertion local ID.

4. The local user enters the local ID.

5. The system retrieves a copy of the assertion data
displayed in an interface containing text fields that are
populated with the current data and are capable of
being changed.

6. Local user edits the data through the interface and
selects the option to save.

7. The system reassigns the original assertion local ID to
this instance.

8. The system generates a new DTG for this instance.

9. The system inserts the new data, DTG, and the
reassigned local ID into the local database.

10. The system displays to the user the local ID and a
message stating that the update is complete.

e The user repeats steps 2-10 until complete.

11. The local user logs off the workstation.

Extensions 4a. Invalid identification number:

1. The system displays an error message stating that the
identification number entered was mal-formed or

non-existent.

37

2. The system returns to the state at step 3 in the main
scenario.
6a. Invalid input:
1. The system displays an “invalid input error” message
stating that the data entered was incorrect.
2. The system returns to the state at step 5 in the main
scenario with the original assertion data remains

unchanged.

Local User Edits Assertion Scenario

Local r Application LocalDatabase

|]
I
|
|

i
|
I startUpdate()

i showOptionDialog()
seecs @ !
‘edit readLine(option) '
|

Selects < |
assertion editiassertion)

: =
. T— .:> setVisibleUl()

Makes 1 LR -
changes -
to assertion save(data) !

setAssertionlD{)
getDTG()

L e e

|
|
|
|
[
[
[
|
|
|
|
: locallD, msg
:

|

Figure 15. Local user edits assertion SSD
38

5. External User Queries ExplanationGetWsS

Table 5.

External user queries ExplanationGetWsS

Primary actor

External user

Stakeholders and

The external user needs information from the local

interest: database.
The local database has the assertion that is being
requested.
Entry The assertion has been previously stored in the
conditions: external database.

The assertion is currently stored in the local database.
The assertion has been assigned an external ID.

The local service is operational.

The external user has already provided his/her
appropriate authentication and has logged in to the

external system.

Exit conditions:

The assertion has been successfully retrieved from the

local system by the external user.

Main scenario:

The external user (client) submits a request for
assertion data.

The ExplanationGetWS receives the request, which
includes the external ID of the assertion to be
retrieved.

Using the external ID as a reference, the local service
selects the respective data from the local database.
The data is returned to the external user via the
internet.

The local service returns to the state before the initial

query.

39

e The external user repeats steps 1-5 until complete.

Extensions la. Network connection not available:

1. If the network connection is inoperable the external
user is presented with an error.

1b. Invalid identification number:

1. The service interface displays an error message
stating that the identification number entered was
mal-formed or non-existent.

2. The service interface returns to step #1 in the main

scenario.

External User Queries ExplanationGet

LecalDatabaze | ExplanationGaltis Cligrit .

I

j request . sandRequast{id)
I
I
I
I
I
|
|
|
|
(]
]
]
i
I
I

read Assertionid) o createResponse(id)

I _____ gaserfion dats

_::;. satResponselassertionData)

returnResponse(responsa)

Figure 16. External user queries ExplanationGetWS SSD

40

6. External User Queries StatusReportwWs

Table 6.

External user queries StatusReportWs

Primary actor

External user

Stakeholders and

The external user wants to verify the status of the local

interest: system capabilities.
Entry o StatusReportWS is operational.
conditions: e The local capabilities have been assigned a status.

The external user provided the appropriate

authentication.

Exit conditions:

The external user successfully receives the statuses.

Main scenario: 1. The external user, acting as the client, submits a
request to StatusReportWs.
2. The local service receives the request from the external
user.
3. The local service retrieves the operational status.
4. The operations status is returned to the external user
via the internet.
5. The local system returns to the state prior to the initial
query.
o The external user repeats steps 1-5 until complete.
Extensions 4a. Invalid identification number:

1a.

The system displays an error message stating that the
identification number entered was mal-formed or
non-existent.

Network connection not available:

The external user is presented with a connection error.

41

External User Queries StatusReport

LocalDatabase

readStatus()

StatusReportWs | liant

1]
: |
i request . sendRequest()

> crealeResponse()

Figure 17. External user queries StatusReportWS SSD

7 Administrator Sets the Capability Status

Table 7. Administrator sets capability statuses

Primary actor Administrator
Stakeholdersand | e The administrator wants to ensure the appropriate
interest: status is set.
e The external user wants to occasionally verify the
status of the local system capabilities.
Entry e The local service is operational.
conditions: e The administrator has already provided proper
authentication and is logged in.
Exit conditions: . The administrator successfully sets the capability
status.
o The administrator receives confirmation of the status
update.
Main scenario: 1. The system displays a menu option that includes the

42

option to set the status of the system capabilities.

2. The administrator selects the option to set the status.

3. The system displays an user interface to set the
appropriate status.

4. The administrator sets the status and selects to the
option to save.

5. The system updates the local database with the
changes to the statuses.

6. StatusReportWSs is redeployed to the application
server reflecting the new statuses.

7. The system returns a message to the administrator
confirming the status settings.

8. The local system returns to the state at step 1 in the
main scenario.

e The administrator repeats steps 1-8 (if necessary)

Extensions la. Connection to the database is not available:

1. The system displays a database connection error.

2. The system returns to the state prior to step 1.

43

Administrator Sets Capability Status

Administrator

Application localDatabase

StatusReportWS

|
:
|
i gelStatuses()
|
|
|

radioButtonForm
Selects status W@ —————]
for appropriate :
operaticn savestaluses(stalus) |

> setVisibleUI()

Figure 18.

message

¥

setStatus{status)

i
|
|
]
|
|
1
]
|
|
|
|
|
]

showStatus()

r

I 1
—_showMessageDialog() i
| :

|

|

Administrator sets statuses SSD

8. Administrator Modifies a User Account

Table 8.

Administrator modifies a user account

Primary actor

Administrator

Stakeholders and

A local user needs an account to execute the system

interest: operations.
The Administrator can create, delete, or edit a user
account.

Entry The local system is operational.

conditions: For account creation, the new user must not have an

existing account.
For account deletion or editing, the user must have
existing account.

The Administrator is already logged on to the system.

44

Exit conditions:

A user account is either successfully created, changed,

or deleted.
Main scenario: 1. The system displays a main menu interface that
includes the option to modify user accounts.

2. The administrator selects the option to modify user
accounts.

3. The system re-prompts the system administrator for a
password.

4. The administrator enters the password.

5. The system displays an option to either create a new
user account or edit a user account.

6. The administrator selects the option to create a new
user account.

7. The system displays an interface prompting for the
new user’s name, account username, and account
password.

8. The administrator enters the new username and
password.

9. The administrator selects the option to save the new
account creation.

10. The system processes the request.

11. The system returns a message stating that the account
has been successfully created.

12. The system returns to the state described in step 5.

o The system administrator repeats steps 5-12 until
complete.

13. The system administrator returns to the main menu and
logs off.

Extensions 4a. Incorrect Password:

1. The system re-prompts for the system administrator’s

45

password.
6a. Administrator wants to edit a user account:

1. The administrator selects the option to edit a user
account.

2. The system displays a list of users that are selectable
and the option to edit or delete the selected account.

3. The administrator selects the user and chooses the
option to edit.

4. The system displays an interface with text fields
populated with the users account information and
capable of being manipulated.

5. The administrator makes the changes to the user
account and selects the option to save. (Continue
with step #10 in the main scenario).

6b. Administrator wants to delete a user account.

1. Steps 1 and 2 from 6a are performed.

2. The administrator selects the user(s) and chooses the
option to delete.

3. The system prompts the administrator for
confirmation on the delete operation.

4. The administrator confirms the operation. (Continue

with step #10 on the main scenario).

Figure 19 displays the SSD for the case in which the administrator modifies a
user’s personal account. Figure 20 extends from Figure 19 displaying the administrator’s
choice of delete and edit. Both continue after the administrator selects the option(s) as

depicted within the red box.

46

Administrator Modifies a User Account

Local User Application

LocalDatabase

| I> getPassword()
|
| A
hioweiv Dialog
it .(____Enfgs_agg showMessageDialog()

password readLine(password) i

|
| showOptionDialo '
p—- 1 —
Selects

Figure 19. Modify user account (create) SSD

47

]
‘Create’ readLingjoption) !
| .
! setVisibleUI()
L. __gcreationform
Enlers :
user data createAcc({data) |
: »
! writelJserAcc(data) "
I I
[
1 e —————————
: showMessageDialogl()
|
|
i

user I edit(user) i3

| -
I . sefVisiblaUI()
! b userEditForm

Makes :
changes createfAcc(data) |
: writeUserAcc(data)
. T
: e T]
i showMessageDialog()
; i message
Edit TR
L
Selects R ‘.‘!
Delete readLine(option) !

]
i * ' .
|, ____options ____ j showOptionDialog()
Confirms :
delete
option deleteAcc({user) i
|
: removelcc(user)
' |
i R
i Messegs showMessageDialog()
|
|

Figure 20. Modify user account (edit & delete) SSD

C. OTHER FUNCTIONAL REQUIREMENTS

The requirements listed in this section are those that were not specified in the use
cases described in Subsection B.

1. System Access

1.1 A local user is required to have an account in order to use the system.
48

1.2 The user account will include a username and password.
1.3 Usernames will be the user’s school email address.

1.4 Users will not be able to change their passwords.

1.5 User passwords will be up to 15 characters in length.
1.6 User passwords can contain any ASCII character.

1.7 User passwords will be case sensitive.

1.8 The ability to manage the local user accounts will be restricted to the system

administrator.

1.9 The system administrator will have the ability to grant or remove system
privileges to users, change user passwords, change the system status, and to

modify new user accounts.
2. Database

2.1 The Database Management System (DBMS) will use a server database type.
2.2 The DBMS will support a relational model.

2.3 The DBMS will utilize a Structured Query Language (SQL) engine.

2.4 The DBMS will utilize an interface driver (e.g., JDBC, ODBC).

2.5 The DBMS should be able to run on a Windows, Macintosh, or Linux

operating system.
2.6 The DBMS should have a minimum database size of 4 Gigabytes.

2.7 The DBMS should be capable of executing, at minimum, the following Data

Types: integers, decimal, strings, and date & time.
2.8 The primary key will be used as the local database assertion identification.
2.9 The DBMS will need to allow for more than one row of data per assertion.

2.10 Any changes or service requests made to the local database must be logged

and subsequently be capable of being queried.
49

3. Local System Functionality

3.1 When creating and subsequently storing an assertion, the user will also have

the option to either Store and Replace or Store and Transfer.

3.1.1 The Store and Replace function will store the assertion in the local
database and replace an assertion that currently exists in the external
database.

3.1.1.1 When a Store and Replace function is executed the local
copy of the assertion that is replaced in the external database will
remain in the local database with a note replacing the respective

external ID stating a replacement has occurred.

3.1.2 The Store and Transfer function will store the assertion in the local

database and forward the assertion to the external database.

3.2 When editing an assertion, the user will have the option to either ‘edit’ an

existing assertion or ‘delete’ an existing assertion.

3.3 When editing an assertion, the user will be shown an interface that displays
selectable assertions with fields that show the assertions have a local ID and / or

an external ID.

3.3.1 When the function to 'edit' is selected and both an local ID and
external ID exist, the selected assertion will be changed in the local
database and the copy that exists in the external database will be replaced

by the new version.

3.3.2 When the function to 'edit' is selected and only a local ID exists for
the assertion then the selected assertion will be changed in the local

database only.

3.3.3 When the function to 'delete’ is selected and only a local ID exists
for the selected assertion, the assertion will be removed from the local

database.

50

3.3.4 When the function to 'delete’ is selected and both an local ID and
external ID exist, the user will be given an option to either delete the
selected assertion from only the external database or from both databases.

3.3.4.1 If the user selects to delete an assertion from the external
database only, the local copy of the assertion that is removed from
the external database will remain in the local database with a note
replacing the respective external ID stating a deletion has occurred.

4. Services and Clients

4.1 The core capabilities of the system are named: KbUpdate, ExplanationGetWs,
DataPush, and StatusReportWs.

4.2 KbUpdate will be a client application that will allow for the transfer,
replacement, or deletion of assertion data to the external system.

4.2.1 The local ID generated for the assertions stored in the local database
will be different from the external ID generated in response to a KbUpdate

operation.

4.2.2 An assertion can only be successfully transferred once in order to
avoid overwriting the external ID that was originally returned. This does

not include replacements.

4.2.3 Feedback will be returned in the form of a message to the user either

during or following the completion of an operation.

4.3 ExplanationGetWS will be a local port type WS that will allow for an external
user to request assertion data from the local database.

4.3.1 For the external user to request assertion data from the local
database, the external ID needs to be received.

4.3.2 ExplanationGetWS will be deployed on the local application Server.

4.4 DataPush will be a client application that is currently undefined.

51

4.5 StatusReportWS will be a local port type WS that will allow for an external

user to request the status of the local system main capabilities.

5.

4.5.1 The status returned to the external user consists of a status message

and a DTG for the time when the operation was last performed.

4.5.2 A status will be assigned to each of the three key capabilities:
DataPush, ExplanationGet, and KbUpdate.

4.5.3 The Web service status message can be a choice between being

‘Available,’ “‘Unavailable,” or 'Unsupported.’

4.5.4 StatusReportWS will be deployed on the local application server.

User Interface (Ul)

5.1 The Ul will be a Web application based on a local client / server system that

consists of web pages a user can access with a Web browser to execute the main

system operations.

5.2 The use of the Ul will be restricted to the local users.

5.3 The Ul will consist of a sign-in page and a main menu page with connecting

Web pages to facilitate executing five main operations: storing assertions,

transferring assertions, editing assertions, setting the capability statuses, and

managing user accounts.

5.3.1 The sign-in page will provide text fields to enter user sign-in data

and a means to cancel the operation.

5.3.2 The main menu will allow the user to navigate to all five main

operations described in 3.2.

5.3.3 The main menu will provide the user the means to log out of the

system.

52

5.3.4 The main menu will display a list of the 10 most recently executed
activities associated with core system capabilities along with their
respective DTG.

5.3.5 The main menu will allow the user to check executed activities that

are not among the 10 most recent.
5.3.6 The main menu will display the current capability statuses.

5.3.7 The Transfer Assertion and Edit Assertion pages will provide a
browsing capability for the user to look up and select assertions.

5.3.8 The functions under the Store Assertion, Transfer Assertion, and
Edit Assertion Web pages that either send assertion data to the external
database, replace an existing assertion in the external database, or delete
an existing assertion from the external database will execute the KbUpdate

client.
6. Application Server
6.1 The application server must be JAVA Enterprise Edition compliant.
6.2 The application server must provide a runtime for Web-based applications.
6.3 The application server must allow for the deployment of Java Server Pages
and Servlets.

D. NONFUNCTIONAL REQUIREMENTS

These requirements express specific nonfunctional attributes of the system’s

environment.

1. Usability

1.1 The intended user is one which should be comfortable with the basic
functionality of a Web browser, which will allow for the manipulation of an

assertion.

53

1.2 The software must be consistent with standard Web browser-based

applications.

2. Reliability

2.1 The system services must be consistently available 24 hours a day during the
project period.

2.2 Mean time to repair will be less than 1 hour.

2.2 Upon a system crash and recovery the database data must be safe and
represent what it had prior to the crash.

3. Portability

3.1 The software must be portable, meaning that the program must be capable of
being executed from a Java Archive file (.jar) and / or a Web application archive

file (.war).
3.1.1 The portable executable files must be compatible with the Glassfish
version 3 Application Server.
4. Supportability
4.1 The software must be capable of accommodating updates to the XSD, WSDL,
or general changes.

4.2 The program code must be well commented to allow for future analysis and
modification.

4.3 The program code must be well commented modular code to support testing

procedures.

54

E. SUMMARY

In this chapter, we provided an SRS for our proposed distributed system. The SRS
utilized use cases to demonstrate the functional requirements and those specific
requirements not mentioned in the use cases were explained in sub-section C. The
sequence diagrams were created to demonstrate the interaction of the processes which
would be needed to execute the core operations and also the order in which they would
perform. We used these requirements to help us design the proposed system that is

covered in Chapter 1V.

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

IV. SYSTEM DESIGN

This chapter presents a design of the proposed distributed system based on the
requirements defined in Chapter Ill. We have broken down the system into four main
tiers to be developed as depicted in Figure 21. The four tiers represents the fundamental

architecture that our client application and service will use for deployment.

Presentation - 1]
Tier
- 1
Web Rr::u_n ote
Tier Clhient
Business —

Logic Tier

Database
Tier

Figure 21. Four tiers of development

A DATABASE TIER

Based on the stakeholder’s requirement of a relational database mentioned in
Chapter 111, our first step was to build a conceptual data model (CDM) of the underlying
database schema. A CDM is high-level visual representation that uses concepts such as
entities, attributes, and relationships to describe a database application (Elmasri &

57

Navathe, 2007). Specifically, we will use an entity-relationship (ER) diagram, which is a

popular type of CDM, to represent our database. To avoid redundancy while ensuring

scalability, we normalized our database by using an algorithm that performs several steps

to map an ER diagram into a Relational Database Schema (RDS) (Elmasri & Navathe,

2007). Figure 22 shows our ER diagram. To clarify what our ER diagram depicts, we will

briefly discuss what the aforementioned concepts found in CDMs mean.

Entities represent a thing (conceptual or physical) in the real world that
exists independently. In our diagram entities are depicted as the green
rectangular boxes. Entities that have an additional outline around the
rectangle are called weak entities, which means that they do not have a key
attribute and are related to a specific entity called the owner entity
(Elmasri & Navathe, 2007).

Attributes are specific properties of an entity. Attributes that are
underlined are considered to be key attributes, which means that they are
unique in value. Attributes are depicted as yellow circles. Multi-valued
attributes are depicted with a double circle and represent data that can be
greater than one set. Composite attributes are those that have additional
sub-attributes (e.g., the sub-attributes for a person’s address are: street
number, street name, zip code, city, and state). Composite attributes are

displayed with extra lines attached to their sub-attributes.

Relationships can exist between entities and serve to describe an
association between them. Relationships are depicted as orange diamonds
and those having an additional outline around the diamond relate weak
entities to its owner entity (Elmasri & Navathe, 2007). The number 1 or
letters N and M adjacent to the relationship represent a cardinality ratio
that depicts the maximum number of instances that an entity can
participate in (e.g., 1:N means a one-to-many relationship).

58

1. ER Diagram

In our ER diagram, we listed LocalUserAccounts as a regular entity with the user
email attribute as the key attribute. LocalUserAccounts is an owner entity that shares a
1:N relationship 'Sets_the" with the weak entity called CapabilityStatus. Since only one
user (system administrator) can set the capability status this type of association between
entities is called partial participation and is displayed as a single line connecting the
relationship to the entities. LocalUserAccounts shares a 1:N relationship 'Manages' with
itself, which represents the system administrator’s ability to manage user accounts.
LocalUserAccounts also shares a M:N (many-to-many) relationship 'Creates_an' with a
regular entity Assertion, whose key attribute is Local _ID. The double lines extending
from LocalUserAccounts to Assertion represents an association between entities called
total participation, which means that all local users can create an assertion (Elmasri &
Navathe, 2007). Assertion is an owner entity type that shares a 1:1 relationship with
DataSource, KbEvidence, KbSupport, and a KbClaim. These weak entities are the
major elements of an assertion that have been determined by the SCIL stakeholders thus
far. DataSource is a new element that is currently under evaluation so we decided to

include this element into our design.

59

i ;—:H\\ I-'/ E.:m

]

I Ekr [0]
@ ® OFa D =

i
N | IL D(_.IJHIIJ\.II.‘ \"' _—
T _\l _/ " {, FJ“ ’ _T'_ .ﬁdu I|:|||.u>

~. e ine)
!) /’éﬁ l 5 i 2 RBralement - I-/I "dl- “‘:
f{ 1 II"-.__.—-——-" Sorce (TJlﬂu[f.v:l:l'Hlnla'in ™ [k x‘l i T
_,-'-""' :?—o— -\-\""-____

o Mediurn ,.II -
£ Bourez) " :

it
I\ TTFM:/-' In'll

.'b-ﬂl.lrtl. T e R
d-—I-__f

k. Ilw-c)
_C ctal..‘lar,a ;|
II/'{-I.IL.TLL

2 Tiictic

: \-CL;isplaz.r\}
S
P

-_,-- I \\-\\
¢ Bﬁbﬁ ...-. o h.a.ltlu /-' l\ E.:“.EH n_'l \\'\. :
e PrixiNime :
I:l?ta[u.-i#r:l H“:F_____ ("\- SR ‘\\ J.-"I;!\\\
7"_”/;,— (\J.‘IH) EW-‘WDL' iﬂr"-»l] ke ““w;:_::x\
ST ((pasians S,u:akcl foThen ™ /¢ Tacki 3
'\,__"'e“'""*} ; \ h_._l]lt.) R (e
Sl I/_ _\r R, -\\ @ S \.§\:__:_f/.r (LHDEE)
DI'.Ibl,uhux- <i|u[!‘!ﬁ: :"\Efff | bp-:ak-:r Ir::;) : 1:1n.':c¢ W / Eo e e
Ypse
I\'H-_}Fl_ﬂ-'/ I / .'/’—Iph'lq.:\'./lm'rr
"\Su'ppt'. f\"ﬂ—_f'
e

Figure 22. Database ER diagram

2. Relational Database Schema

Taking the ER diagram developed in our first step we used the following steps to
map the ER diagram into a Relational Database Schema (RDS). The schema in turn

guides the design of the database tables.
a. Mapping of Regular Entity Types

Figure 23 displays the RDS, which initially includes LocalUserAccount
and Assertion. They are both assigned their own relation with email and locallD,

respectively, as their primary keys.

60

LocalUserAccount lirstName | lasiName email password

Assertion JocallD | ext D dig flag

Figure 23. Mapping of regular entity types

b. Mapping of Weak Entity Types

In step 2, relations that are created for the weak entities, which include

only the non-multivalued attributes are added to the RDS.

lastName‘ email ‘ password ‘

LocalUser Account ‘ firstName

Assertion‘ locallD ‘ ext ID ‘ dtg ‘ flag ‘

dpDTG | egDTG |

CﬂpabilitySmtus‘ kbuStatus ‘ dpStatus ‘ egStatus ‘l(buDTG

KbSupport‘ theoFrame ‘ locallD ‘

Kb(.‘laim‘ predName ‘ speakerID ‘ speakerTyvpe ‘ locallD ‘

Kl)Evidence‘ version ‘strength ‘ display ‘ locallD ‘

sonrceLoc | sourceLang ‘

DataSource| sourceMedium ‘ sourcelype

locallD

langUseDom ain

sourceName

Figure 24. Mapping of weak entity types

C. Mapping of Binary 1:1 Relationship Types

In step 3, we merged all of the weak entity relations created in step 2 with

their owner entity (Assertion) keeping locallD as the primary key.

61

L(rcalUserAccr,runt‘firstName‘ lastName ‘ email ‘ password ‘

locallD ext_ID dtg flag theoFrame version PredName

speakerID ‘ speakerType

Assertion

strength | display | langUseDomam | sourceMedmm | sourcelype | sourceLoc sourcelang | sourceName

dpDTG | egDTG

CapabilityStatus‘ kbuStatus ‘ dpStatus ‘egStatus ‘kbuDTG

Figure 25. Mapping of binary 1:1 relationship types

d. Mapping of Binary 1:N Relationship Types

In step 4, we added foreign keys in both CapabilityStatus and

LocalUserAccount; both of which refer to LocalUserAccount’s primary key: email.

| |

lastNﬂme‘ email ‘ password ﬂdminEmail‘

)

LocalUser Account ‘ firstName

locallD ext ID dtg flag theoFrame Versilon PredName

sp eakeer I} ‘ speaker Type

Assertion

strength ‘display langUseDomam | sourceMedium | sourcelype | sourceLoc sourceLang | sourceName

CapabilityStatus ‘ email ‘ kbuStatus ‘ dpStatus ‘ egStatus ‘ kbuDTG

dpDTG

egDTG ‘

Figure 26. Mapping of binary 1:N relationship types

e. Mapping of Binary M:N Relationship Types

In step 5, we create a new relation called 'Creates_an' that houses two

foreign keys referring to the primary keys in LocalUserAccount and Assertion.

62

LocalUser Account | firstName | lastName | email password | adminEmail
v
i locallD) ext_ID dtg flag theoFrame sp eakerID speakerType version PredName
Assertion
strength | display | langUseDomam | sourceMedmm | sourceType | sourcelLoc sourceLang | sourceName
CapabilityStatus| email | kbuStatus | dpStatus | egStatus | kbuDTG | dpDTG | egDTG
Creates an | email locallD
Figure 27. Mapping of binary M:N relationship types

f. Mapping of Multivalued Attributes

Finally, in step 6, we map the multivalued attributes to their own relations

containing their respective attributes along with a foreign key that refers to the primary

key of Assertion. Figure 30 depicts the proposed database tables that will be created for

the system. The table names are the relation names on the side of the attributes and the

column names are the attributes themselves. We populated the database with sample data

and we will discuss that process in Chapter V.

63

LocalUserAccount | firstName | lastName | email password | adminEmail
5 5 I) |
1 locallD ext_ID dtg flag theoFrame sp eakerID spealkerType version PredName
Assertion
strength | display | langUseDomam | sourceMedium | sourcelype | sourceloc sourceLang | sourceName
A
|
CapabilityStatus| email | kbuStatus | dpStatus | egStatus | kbuDTG | dpDTG | egDTG
Creates_an | email locallD
DataSource locallD dataSegment
KbEvidenceStatement locallD dataSegment
; -
KbClaimTarget locallD tet id Tgt type
; =
KbSupportTechTerm locallD dataSnippet term gloss

Figure 28.

B.

1. XML Schema

Mapping of multivalued attributes

BUSINESS LOGIC TIER

In Chapter 11, we discussed XML schemas and their significance. In this section

we present aspects of the XML schema related to our client and services. The schema

was generated by Richard Tong, a representative from IARPA-Scientific, Engineering

and Technical Assistance branch. As of May 4, 2010 the current version of the schema is

1.2. We modified and renamed the schema in order to accurately reflect the structure of

the assertions agreed on by the UMD stakeholders. We also employed two versions of the

schema, one for our Web services and one for our client. By doing so, we were able to

remove the XML syntax that did not pertain to the respective operations, which made the

lines of XML easier to manage and sped up the program compilation process. The

64

StatusReportWS and ExplanationGetWS services utilize UMDSchema_12b.xsd. The
KbUpdate client uses STEPSchema_12b.xsd. In the Appendix, we have listed one
schema that includes the data types and elements defined in both versions.

a. StatusReportWs

The schema element StatusReportResponseMsgPart, shown in Figure 29,
represents the service response to the incoming request. It is constructed with two sub-

elements: Metadata and Payload.

<xs:element name="StatusRepertResponseMsgPart ™=
<xs:annotation>

<xscomplexTypes

<Xs:Sequence>

«<xs:element name="Metadata">

<xs:.complexTypa=

<XsISequences

<xs:element name="Messageld” type="xs:string">
¢ | <xs-annotation:

| <ixstelements

¢ <xselement name="Requestorld” type="xs:string">
¢ | =xs:annotation=

| <ixselement>

<[xsisequences>

“fxs:complexType>

<Ixs:element>

«<xs:element name="Payload">

<xscomplexTypes=

| axs:sequences

<xs:element name="StatusReturnBundle” type="stepd:StatusReturnBundle"/>
<fxsisequence>

<fxs:complexTypes

<fxs:element>

<xs:sequence>

<fxs:complexType>

<fxs:element>

Figure 29. XML schema StatusReportResponseMsgPart

Metadata is composed of the message and requestor identification that is
submitted in the request and is subsequently returned. The Payload element holds a
sequence of sub-elements and types, including StatusReturnBundle, that eventually
provide the capability status.

Figure 30 shows the ServiceStatusReport type that holds the individual
client and service capability status. Although not depicted for brevity, each sub-element
capability is composed of a State and a LastDtg. The State is of type ServiceState that is

65

the simple type described on the top. LastDtg is of type dateTime, which is an integer-
valued year, month, day and time structure (W3C, 2004).

<xs:simpleType name="SeniceState™
i <xs:annotation>
<xsrestriction base="xs:string" >
| <xs enumeration value="available"/>
<xs enumeration value="unavailable"/>
i <xs:enumeration value="unsupported™/>
. <fusIrestriction>
</xzsimpleType>
<xs:complexType name="SeniceStatusReport”=
| <xs:annotation>
X5 sequence>
<xs:element name="KbUpdateCapability">
i <xs annotation>
<xs.complexType=
| <xs'sequences
! zxg element name="State" type="stepd SeniceState"/>
=xs.element name="LastDtg" type="xs:dateTime"/>
i <Mxsisequence>
- </xs:complexType>
<fxs element>
<z element name="DataPushCapability">
<xs element name="ExplanationGetCapability”=
i <fxs:sequence>
<fxs:.complexType>

Figure 30. XML schema ServiceState and ServiceStatusReport

b. ExplanationGetWsS

Figure 31 shows the ExplanationGetResponseMsgPart, which is the root
element that comprises the message to be returned to the client. In similar fashion to
StatusReport, it contains a Metadata and Payload. The Payload houses an
ExplanationReturnBundle that, although not depicted, also has a set of Metadata and
Payload. This sub-Metadata holds the Assertionld that references the particular data to be
obtained from our database. The sub-Payload subsequently contains the main elements
that make up an assertion that are listed under the complex type KbAssertion in Figure
32. Although, in concept, the key elements to an assertion remain as the claim, evidence,

and support, the KbAssertion is made up of two elements, the AssertionMetadata and
66

AssertionContext. However, AssertionClaim, AssertionSupport, and AssertionEvidence
are of separate individual types that are further defined in Figures 34, 35, and 36.

<xs element name="ExplanatienGetResponselsgPart">
{ <xs.annotation>
<Ws complexTypes
i <xsseQUENCe:
<xs element name="Meladata">
| exs-complexTypes
<X SEQUENCE>
<xselement name="Messageld” type="xs5 string">
i ¢ <xs-annotations
i =fxselements
<z element name="Haquestorld” fype="xg stnng™>
<xs:annotation>
L =iwsielements
<f¥s sequences

I{I'IKE!.C':II'FE'lEHT'y'pE?
<i¥selement=
«<x5:alemant name="Payload">
<Hs complexTypes
| exszequences
i «xs:glement name="ExplanationRetumBundle” type="stepd: ExplanationReturnBundle"/>
i <sisequence>
i <xscomplexType>
<ius element>
| =ixsizequence>
</xs:complexType>
<ls elements

Figure 31. XML schema ExplanationGetResponseMsgPart

AssertionMetadata is composed of three elements including
AssertionFlag, which is also defined in the schema. The AssertionFlag is designed as an
enumeration of the value: 'Public' and 'Private,” which represent viewing authorization
labels for the assertion. AssertionContext has an element called DataSet that is of type
DataSource. Figure 33 shows DataSource. The elements and types defined within

KbClaim, KbEvidence, and KbSupport were specified by the UMD teams.

67

<x5-complexType name="KbAssedion >
<R3 SEQUENCE™
| <xselamant name="AssanionMatadata™>
axs.complaxTypes
<XFsEqUence>
i =xsielement name="Asserionld" type="xs:string">
<xselement name="Assermion0lg” type="ns dateTima">
<xs elzment name="AsserionFlag” type="stepd AssertionFlag™>
| <hisisequencer
| <fuscomplaxTypes
<ixs elament>
<xs element name="AsserdionContext”>
| cxscomplexTypes
| =WgIgequancas
i <xselament name="LanguageUseDamain” type="xs siing" default="Persuasion Attempt">
i <xselement name="CataSet” fype="stepd DataSource">
i =hissequence>
<fus complaxTypes
<fxs elemants
<xzelement name="AssenionClaim” type="stepd:KbClaim™ >
=xselament name="AsserionEvidence” type="stepd: KbSvidence™f=
<xs elament name="AssedionSupport” type="stapd KbSupport'=
<fisisequences
=fxs .complexTypes>

Figure 32. XML schema KbAssertion

<xs complexType name="DataSource">
<¥g annotation:>
<5 SEqUence=
i =xselement name="DataMetadata™>
i =xs:annotation>
<xs:complexTypex
i <xssequences
| =xsielement name="SourceMName" type="xs:string">
«<xs-element name="Sourcelocation” type="xs:anyURI"=
<xs element name="Sourcelanguage” type="xslanguage”=
<xs:element name="SourceType" type="xs:stnng >
{ <xs:element name="SourceMedium” type="xs strng">
<f¥g sequance>
<is complexType>
=ixs element=
<xs element name="DataSegment” minOccurs="0" maxCOccurs="unbounded”>
[<xs:annotation>
<xs.complexType=
! <xs'sequence=
P oexs-element name="SourceDataSegment” type="xs:string"/>
<fus sequances
<fus:complexType>
<z element=
“iNE Sequence>
<fis complexType>

Figure 33. XML schema DataSource

68

<xs:complexType name="KkClaim">
i -:xs'sequen:e:\-
i <xselement name="PredicateClaim’™=
| <xs:complexTypes
A‘.’I'EZEEqIJEI'IEEP
| exe-element name="PredicateMame" type="xs:stnng” default="Persuasion Attempt™/>
<xs-glement name="Speaker’=
i <xs.camplexType>
i <AS.Sequence>
| =xselement name="Entity” type="stepdEmtity"/=
<fus segquance=
<ixg complaxTypa=
=fvg elamant>
<xg alement name="Target">
<xs complexType:
NG SEQUence>
f <xs elemant name="Entity" type="stepd Entity” maxOccurs="unbounded"/>
<fyg sequence
i exscattribute name="type" type="xs:string” default="directed">
<hg complexTypes
<fxselement>
| <ixsisequences
</xs-complexType=
i <fwsrelement>
| <ixs:sequence>
ﬂxs.'::nmplex'ﬁ_,lpeh-

Figure 34. XML schema KbClaim

=xs complexType nama="KbEvidence >
| <xsisequences
i <x5 . element name="EvidenceValue" type="xs:string™>
| | =us.element name="EvidenceStatement” type="stepd. EvidenceStatemant />
I <Hs SequUeEnce™
=fus complexTypaz

<xs complexType name="EwvdenceStatement™>
“XS gequence>
<x5 element name="Constituenthultiset”=
<xg complexTypez
| <xs:seguencer

=x5: element name="PersuasionTactic” maxOccurs="unbounded">
| <xs:complexType»
i <5 group ref="stepd: PersuasionTacticGroup™/=
=fxs complexType>
i <fxsielement>
<ixs saquences

<fxs:complexType=
=ixs elemant=
RS sequence>
«/us complexTypes
<xssgroup name="PersuasionTacticGroup™>
ioaxsall=
| <usalament name="tactic™ type="xs:string"/>
<x5 element name="startling" type="xs:integer'/>
=xg element name="endling” type="xsintager /=
i <xs:element name="doc" type="xs:stning"/>
L aixsalls
£hs groups

Figure 35. XML schema KbEvidence
69

<xs:complexType name="KbSupport™>

{ <yssequences

<xs element name="TheoreticalFrame” type="xs:string"/>

<5 element name="TechnicalTerm” maxOccurs="unbounded">

i <xs:complexType>

[<xs sequences

. <xs:element name="TechnicalTermGloss" type="xs:string™/>

I =xselement name="DataSnippet” type="xs:string"/>

<fxsisequences

[<xs attnbute name="term" typa="xs:string" defauli="redefinition"/>
<fus complexType=

<fxs elements

; <f¥s sequence=

<fxs:complexTypes

Figure 36. XML schema KbSupport

C. KbUpdate Client

KbUpdate is a client and the KbUpdateRequestMsgPart, pictured below, is
the root element comprising our request message to the external system. The request is
sent to the external system to update the external knowledge base with assertion data. The
request can either add a new assertion, delete a existing assertion, or replace an existing
assertion from the external database. As depicted, the request contains Metadata and
Payload. The Metadata contains a message identification and the requesting team
identification. The Payload is composed of an option of element bundles representing the
desired type of wupdate. Figure 38 displays the AssertionAddBundle. The
AssertionAddBundle element has Metadata that addresses the number of assertions to be
updated and is called AssertionCount. The Payload contains the element Assertion and
references the same elements and types previously defined in the ExplanationGet
description.

70

<xs:element name="KblpdateRequestisgPart">
i <xs:annotation=
<xg complexTypes
=HSISequencer
<xs element name="etadata">
<xs:complexType=
| «wssequences
| exzelemant name="Messageld” type="xsstring"=
, =xgelement nama="Teamid" type="stepd Teamld"=
i <ixsisequence>
<fxscomplexType>
/x5 element>
<xs:alement name="Payload™>
<uscomplexType=
i <xschoices
I «xselement name="AssetionAddBundie” lype="stepd AsserdionAddBundle"/>
<xselement name="AssertionReplaceBundle” type="stepd: AssertionReplaceBundle”/>
<xs:element name="AssertionDeleteBundle” type="stepd:AssertionDeleteBundla"f>
<i¥s choice>
<fxs complexTypes
I <fxgielement>
“fis sequences
<fuscomplexTypes
<fxselement:>

Figure 37. XML schema KbUpdateRequestMsgPart

<xs:complexType name="AssertionAddBundle">

<xs:annotation>

=xXs5equence>

<xs element name="Metadata™>

<xs:complexTypa=

xS sequUences

<xs:element name="AssertionCount™>

I <xs-annotation>

<xg simpleType>

[<xsrestriction base="xs:integer"s
i =xs:mininclusive value="1"

I <fdsrestrction>

| <ixssimpleType>

<fxs element>

<fxs:sequence>

<fxscomplexType>

<fxs element>

<xs elemant name="Fayload >

<xs:complexType=

| <xsseqUences

i | <xs.element name="Asserion" type="stepd:KbAsserion" maxOccurs="unbounded™>

| </xs sequence>

<fscomplexType=

=fwselement>

(x5 Sequence=

<fxs:complexType>

Figure 38. XML schema AssertionAddBundle
71

The AssertionDeleteBundle (Figure 39) also contains Metadata and
Payload elements. The Metadata is similar to the AssertionAddBundle, however now the
AssertionCount refers to the number of assertions to be deleted. The Payload on the other
hand refers to the particular identification number of the assertion(s) to be deleted. The
AssertionReplaceBundle (Figure 40) uses the same Metadata and Payload structure
where the AssertionCount refers to the number of pairs of assertions to be swapped. The
Payload’s sub-elements describe both the identification number of the assertion from the
external database to be replaced and the particular assertion from the local database that
will replace it. Again, this Assertion is of type KbAssertion described in the

ExplanationGet.

<xs complexType nama="AssertionDeleteBundle™=
| =xs:annotation=
<X3ISequUence>
| <xs-element name="Metadata">
| <xscomplexType>
| <xsrgeguences

i <xs:element name="AssertionCount">
<fxs sequences
<5 complexTypes
<fwg elemeant=
<yg-elemeant name="Payload"=
i <xs complexType>
| <xs:sequence>
: <xs element name="Assenionld” type="xs string” maxOccurs="unbounded"=
i <Mszequence=
i <hescomplexTypes
i <fxselement>
<fxs sequence=
<fws complexTypax

Figure 39. XML schema AssertionDeleteBundle

72

=xs complexType name="AssertionReplaceBundla”™>
<xsannotation=
<Xg sequence>
<xs element namea="Metadata"=
i <xscomplexType=
| <xEsequences
i <ws:element name="AssefionCount">
| «<ixs:sequences

<fxs:complexType>
w5 element=
<xs element name="Payload™>
I ewescomplexTypes
| <xs'sequences

! oxs:element name="AssertionPair* maxOccurs="unbounded">
! exg-annotations
<xs:complexType>
| <x5 sequences
i <xs-element name="ReplacedAssertionld” type="xs-string">
i =xs:element name="Assertion” type="stepd-KbAssertion">
i <fxs.sequence>
<fxs:complexType>

=fws.element>

i =fxssequence=
=fws.complexType>
<ixs elament=
s sequences
<fxs complexType:

Figure 40. XML schema AssertionReplaceBundle

2. Class Diagrams

Earlier, we showed the readers our proposed domain model that provided a
conceptual perspective of the system as a whole. In this section, we used the same UML
modeling notation to provide class diagrams that provide the software-focused structural
view of the system, with the main elements indicated by boxes. Each box contains three
sections: name (top section), attributes (middle section), and functions (bottom section).
In the following sections, we will walk through the class diagrams for our StatusReport

service, ExplanationGet service, and KbUpdate Client.

73

a. StatusReport

Figures 41 and 42 display the class diagram for the StatusReport service.
Class StatusReport implements the client interface SR_PortType and is dependent on the
request message received that is of the type StatusReportRequestMsgPart. The message
will contain both a message ID and a requester ID (Metadata), which are eventually
returned to the client as part of the StatusReportRequestMsgPart along with the
Payload. This Payload class refers to a StatusReturnBundle class, which also has a
sub-class called Payload that refers to the class ServiceStatusReport. ServiceStatusReport
has the three subclasses, which hold the methods that work closest to the Database
class in order to get the information from the database. KbUpdateCapability,
ExplanationGetCapabiltiy, and DataPushCapability refer to the ServiceState class, which
holds an enumeration of string literals: Available, Unavailable, or Unsupported. Finally
the Database class implements the Connection interface, which provides the methods for
interacting with our database. The Connection class is a Java 2 platform object

(http://download.oracle.com/docs/cd/E17476_01/javase/1.3/docs/api/java/sql/Connection.html).

74

Metadata

Metadata smzssageld g
srequeaston d Sring

mescageld: String

srequestorid: Stnng gethieszapeid’): message d
+pethdessageld]): messageld :;f:;::::"u:?::fgg;;rg;
+eathleisazel din value: Rring) -séi;leq'g.m-nd]; e tirnad
+petfequestoridl] : requesharid Gz 1
+r=t Aegquestor idin values String) /
1 SansReporiBepa b
1 # metadatz: SataRepartResporeeeart Metdata
Foevload: SeusRenmttemponsahipPart Paylad
4
StatusReportRequesthsgPant *geiletadati(). metadan
+ seihvetedatanvalue: SameRoporiPespensel et Metadat)
L i . + geiPayloedT vaylosd
= metadata: StatusfeportRequesthlsglart Metadata |]| < efPavioadiin vakie: St wsehegPart Basiad) |
+ getMetadatal): metadata |
+ setMetadatalin value) :
:) Payload
| stabeAeumdnde SausRsuniinde
StatusFaport spattahaAetmi ndsl|
et isFebrrnd eveie: SEReAUmANdk]
+ el StalusFeportim dalusEeques) 1
Jo 1
<<interface> Il
il i I SamsReturnBundls
______ I
(-]_ # pavload: StamsRetimBundie Pavioad
+ statmsRaport(in statusR.equest) + getPayload(): paylosd
+ setPavload]in value)
l‘ 1
ServiceSiatusReport

Figure 41. StatusReport class diagram part |

75

ServicaStatusReport

#kbUpdateCapablity: Bervicebtatuskeport.KbUpdateCapability
foataPushCapakbility: ServiceStatusRepart. dataPushCa pability
#explarstionGetCapabifty: ServicesratusReport. enplararisnGetCapahiling

<cenumeration==
ServicesState

“walues final SLiing

ServicaStatelin w String)
+yaiue]): value
efrom\aluelim v: String): Senvicestate

1 1

+petkbUpdateCapsbiity{) - kblipdatelapability

ssetkbUpdateCapabilityin walue : SericeStalus Report. EbUpdateCagability)
+gotDataPushCapability) : DataPus hCapabily

+usetDataPushCapabilitg [invalue © ServiceStatusRepart. DataPushCapability]
+poeExplanatisnGotCapa blity |} : ExplanatiseGatCapabiity
+eetbeplarationGetlapahibty (in value : ServiceStatusReport, ExplanationGet Capakilisy)

[
1

I

KhUpdateCapahility

ExplanationGetCapability

DataPushCapability

atake: SendceSlate
YlastUtg: XMLErcgoant alendar

¥slate: SendceSiate
FlastOre: ¥MLGrepon ancale ndar

Bslate: Servicestate
¥lastUtg: ¥MLGregorianCalendar

+petiate ||z state
+setiiatefinvalae - Service Stato|
+getlastOtg(): st oip

+setLastDeglinvalue: XML Gregori anCalendar}

+gotitate (|- state
+setitatallnvakie : Serdeattate]
+getlastitgl): lastong

+5etLastDpdln value: KMLGregzorlanCalendar)

Figure 42.

ipEistate || stane

+spthtatedinwal ve : ServiceState]
vpetLastDigle lastD g
+setLastOiglinvalue: M LGregorlantalendar]

StatusReport class diagram part 11

76

b. ExplanationGet

Metadata Pirf e

== Interface==
S eaglznztion RegueaBurdle: bpianat on Regues undle ExplanationGetPosType

i messagald: String
I vegustarlel: String

+pethessageld () mecagels +petblnaionlzgeatindz|): epanationfenesbunik

+aeessageldlin values String) -+t aplan dion AguetTund e whis Eqbeatinfagued Sndy] + getExplanation fin explanationRequest)
+ getRequastarld (] 1 requastorld o

+ setRaquestorldiinvalve: String) 1 J.|_>

|ﬁ q 1 I
! i |

FrplznationGatiequastisg

ExplanationGet

#metadata: ExplanationGetRequestMsg. Metad st -
payload: ExplanationGetRequestMsg . Payload

+petMetadatal) metadata

+setMetadatafinvalue: ExplanationGetReguestiv sg Metadata)
+ getPayload(): pavicad

+ setPayload(in value: ExplanationGetRequesdtMza Payload)

+ getExplanation {in explanationRaquest)

1

1

Pavloed . 1
explanzticn ReturnBund e Eaplanad cof enpeBmedle j 1
Explacati caCmResponsebdsg Part

=prtedata; Explanst oelret RespoonsehsgPart Metadata
it payload ExplanationGetResponseMsgPan Pavload

+getExplam donFewmBundle)
+setExplanat onFetamBun dlen walue: ExplanationRetum Bund =)

1 — peiMetadaa) metadata
Metadata —set Metadatafonvalue ExplanationGetResponseMzpPart Metadara)
messagelt: String —petPayloadd) pavlead
gyl 4 alue: BimlanatonG I linad
reusstari: String setPavlaadin ?h-; Explanation(iet ResponsehsgPart Pavload)
) + pathdassageld (|: messageld 1
L + sethiesagaldiin value: String) 1
ExplanationReturnBundle +getiaquestard] | requestarc
+setRenuestorldiin value: Sinng)

Figure 43. ExplanationGet class diagram part |

Figures 43 through 46 display ExplanationGet. ExplanationGet
implements the ExplanationGetPortType and is dependent on the request message of type
ExplanatioGetRequestMsg. Similar to StatusReport the same Metadata that comes in the
message is returned to the client along with the Payload. The Payload refers to an
ExplanationReturnBundle class that contains a Payload and Metadata. The Payload is
actually a list of assertions, which are instances of the KbAssertion class. KbAssertion
has two components called AssertionMetadata and AssertionContext. AssertionMetadata

calls the DataBase class directly while AssertionContext refers to DataSource.

77

KbAssertion also refers to KbClaim, KbSupport, and KbEvidence shown on Figure 45.
Each of these classes either contain instances of classes that call the DataBase class or
call the DataBase class directly in order to obtain the assertion referenced by the assertion

ID used in Payload.

<ammerationss
AzsirtionFlag

[xplarationfeturnfunde

#metadata: ExplanationRewmBundle Metadza
payl oad: ExplanatiznReturn Burdle Payload

EmmValus PFRIVATE &ting
EnumValuz FUBLIC: Stong,

+pethletadatalt metadatz

+setM etadstalin value: Explanation Return Bundle.Matadata) # value: String Tl Ceegoriand aledar
getPayload(): payload
& cetPayload[in value: ExplanationfeturnBundle Payioad) +value(): vahie

+ fromValue(in v~ String) = s Ve m(nyedr i)

¥
1 1—| —-

= siMithficconlk: m)

Pavlead W efacata | | 7t Diein iy iy
= assartion: Lis<KbAssention #assrtianid: String : 3
= esertion]d: Sming I
= T T ~gethaarianid (|; asermiond I i
et drsesticukl +sethssetionidiin va loe: Sirirg! |
Aszemonbdetadars

& aszerti enld: String
% aaserti enDeg: XML GregonanCalender
¥assetticnFlag Asserticnflag

=
Khsszrtion 1

amertionMetadata: Kodssrtion. AssertionMetadetz

#amertivnlontest Kodsmeriion AsertionC omexd
2zzentiondlaiz: KbClaim

7 amerticnEvidezce: KoEvidonee

azertionSuppon: KxGuppert

= getAssemionddemd aa); asserticnbdetadata

= setAasemiondlptedateiin vatos: Kb Assestion. Assert onMetadata)
- getAssertionContent () 2ssertion Context

= stAssertiont ontes o value: EhAssrtion AsssrtionContzx)

= getAssertionCiam{) assertiont [am
= sl Assertion: lamnin vale Kb lam) AzsrtonComtent
= gptagsemionEvidence () assemienE v dance # lanmua gelseDoemats Srag
= setAssenionEvidence(in vafoe: KhEvidence] P&l:??[hm&:mm-- =
i L. g

= grtassertionfupport(): eserticn Suppon
= setAssemionsupport(in valus: EbSupoert)

t garAssentianidl); asserboeld

t setAssertianid (i valae: Stingh
+getAssemianDite] ' aseemionDts

+ setAssemianDtgin viue: XMLGregodanCalzander)
+ pethsseriianF lapl) assertionflas

T setAssertianFlag (nvalue AssetionFlag)

DataBase

DnataSonree

+getl anmazztseDomain) lanmagelslomain |4

1 1 1
1| i + el anmiageUseDomain (in valua: Sfritg]
k' ¥ L' + gt Dutasel) datasel
KhClaim | | BhSuppert KEvidenc +ratTatasetinvalue: Datasawre)
Figure 44. ExplanationGet class diagram part |1

78

KbClaim

+getPredicateClaimi): predicateClaim
+setPradicateClaim(in value)

T,

EretezzQzn
= i catellam s Sting
sy dlwr: B aime PredicmeCiuim Spaaker |
rrapes KhClem, Predizaielism Tape

+ perPredicancilame) preckemehiam:
+ gl Fpsdicabam e valee!

+ g pedlenT spadies

+ i Spraker| o Tale)

+ petTar]} et

+ st Targetl invalne)

=thearetz alFrene: String
kechnical Term: List= EbZupport Tacimical Teem.»

predicateClaim: EbClaim PredicateClaim =

| # exttity: Bty

Lpeaker

FhEvideme

+ geilheoreticalFrame{): treorzticalframe
+ ser Thsarstical Frame] invalue)
- peilzchrued Teen(). Lactmcal Tenm

-

Torkwics Term

=techTermldnm: Soming

& dtafmippet Siring

=1eeme Siving

- get TechTarnull oo tech TermaGlass
st Tach TeemGlces in value)

= et Dlan s poen()- dataSnippet

« setDlabafmipret i valoe)

= get Termi) term

- gt Term in vl)

Figure 45.

= doc: Strins
= aatTactie]): |che

« setTacte] invaloe)
~ getStanlins(. startline
= artftarLme] i value)
= aziEndline]) endine
+ petEndlinef in value)

* getDoc deo
= setDae] ik valuz)

1 1 | = getErmi i - . T -
i F':E::? F:l_:]“"') 2 evidence Value: EbEvidence Evidemes Vahue
B AR 2 evidence St KbEvidenee Eviderce St
Target +zetEvidemcaloal): evidenceVala:
+sefEviderceValue! in value)
eaziity: List= ity + geEvidenseS ey evideneeS L
Flype. Sag +saiE vadeeraBimd(tn vatue)
i + petExtiTg} entits [
Eniit ¥ Lid
= T getType{)- type 1 1
Wid: L + st Typo{w welue)
= fypet: String 1
frole: Sirng 1
:_: :'x I.r_rd|__ ot 1 Errdepoe Vo
geLld i s T e
[::t[d[:; walue) = displuy: S
+ ai T Evadencs St ¥eleangh: Eral
+pal Topel): lrpe Zvesisr Srng
+ et Typefinvalus) # goramenchulnzer Evdesce S Copamusmbbily s -
+ getPoodal e rals — e Dligples (' daplay
i Pty + apal anauensh il e coas ot et = st Dizplay invaloe}
Ftfelan vl B S = ;
. |7 Comsnmendfulrge invate) + getSrmpgth}: sengta
| * ‘ = Blranzthy io valie)
| { 1| = g M) vereion
L 1 + sVaraoy invaug
PrrsuwamenTactic 1
—| DataBase =tactic: Siong Constienthiultiset
=aline it
= redine-ie #osrmaninn Tachs: Lig=Evidenre3tmi Constitaanthhlbsss

+ getPersasssan Tactie]); persnssanTactie

5
I
|
I
I
|
|
I
|
I
|
I
|
|

ExplanationGet class diagram part 111

79

DataSoure
DataBaze

i ains: St # dateMletadata: DataSource DataMetadata:
m’ei‘kame. Stnag # datzSegment: List<: DataSource DataSegment=
= user¥ame: String

L + getDatabetadata(): damMetadata

rak G hosedim + setDataMietadata(invalue: DataSource DataMetadata:)
+readAssertionTable(inid: String) + getDataSegment): dataSegment

t readClaimT gtTable{in id: String) ¥
+ readContextDataTable(inid: String) q ’—1—7 1

+readEvidenceStmtTable(in id: String)

+readSuppont TechTable(inid: Sting) | ———— DataBemmei

sourceDataSegment: String

A

: | + getSourceDataSegment(): sourceDatabegment

| | +setfourceDataiegmeant(in value)

| | 1

<<Interface=> | |
Connection
J [Dratahizradara
l # sourceMarne: Smng
+emaeSaemsn) |0 T T T T T T T T T T T T T T T T # sourcelocation: Siing
+ereate SQLIML # sourcelanmape; String
...... # spurceType. String
sourc eMedium: String

+pet SourceName(): sourceMame
+setSource Mamein value)

T gatSourcelocation). sowrceLocation

+ setSourceLocation|in value)
+getsourceLanmuage(): sowrcelanguage
+ setSourcelanguage(in valuel
+gatSource Type() sorceTvpe

+ setSource Typefin valoe)
+getSourceMediom) soaroeMedium
+setiource Medivmiim value)

Figure 46. ExplanationGet class diagram part 1V

80

C. KbUpdate

KbUpdateRequesthisgPart Metadata

metadata: KbUpdateF.equestMsgPart Metadata j :mss?fif; g
payload: KbUpdateRequest™sg Part Payload sl

P+ getMessageld(): messageld

+ pethztadatal): metadatz T 1 |+ seesz geldiin value)
+ sethetadatalin value) + et TeamTd{): teamTd
petPavlcad(): pavload i + setTeamidlin value)

+setPayload{in value)

Paylead

% assertionAddBundic: AssertionAdd Bundle
assertionDeletzBundle: AsserfonDeleteBumdls
% asserfionfeplaceBundle: AsserfionR eplaceBundle

+ getAssertionAddBundle]): assertionAddBundle

+ setAssertionAddBundle(in value)
tgetAssertionDelsteBundle(); assertionDel etz Bundls
+ setAsgertionDele tfeBund ledin value)

t getAssertionReplaceBundle(): a sertionReplace Bundle
+ setAszestionPeplaceBundle(invalue)

B 0.1 —_— 0.1
ol Wy J
AsserionAdiBmde Assritian Tl ebe Rl AssertioeBeplaceBundl
Efn"ml:’ld:ﬂ.’l ,‘n.s:w_r.1im|,‘u1|TF!|mrT.a _"-T-.:‘t:l-:‘l:]l:.’l & metadats: AgserticoDebets Bandle Metadsts £ metadze AssertonBleplace Bundle Metadata
U pavlad AssetiondddBundle Padead & pvload: AssertionDeleteBandle Pavicad £ parlnad AsserionTepl e Bumdie Padoad
+ zatMetadatal), met data +petMeradata{): metadata rgetMeadatal ez dita
+ satMetadztaim value) + set Metadatalim value) = szt tadalalin value)
+ getPayl oadl); paylead +getPaviozd(y: parland = zetPayload]) -pavinad
+setPeloadiin velue) +setPayload (in value) = aatPalad in vales)
1 ! 1 T 1_T 1 4 1
Payload Metadata Payload Pavload | | Metadata AssertionPair

Figure 47. KbUpdate class diagram part |

Figure 47 above shows the first half of the KbUpdate client class diagram.
Our request message contains Metadata and Payload. The Payload holds a bundle
depending on the operation desired. Each of the bundle classes have their own
components that continue in Figure 48. The AssertionAddBundle and
AssertionReplaceBundle eventually use the same class path structure to obtain the
assertion data as the ExplanationGet service. AssertionDeleteBundle only has one class
that handles the list of assertion IDs to be removed from the external database.

81

Assertion AddBundle AssertionDelergBundle

1
i 1 ! T_l_‘
Pedlrad .
i Payload
assertion: List=EhAdsertion= 5 i R :
b assertionld: String assertionld ; List<String> T | AssertionReplaceBundle
-
+ getdssertion] in asertionld) —getAssertionld(): asserfionld) 1] 1
i 1
Metadata
Mrefadala 7 : —
it pssertionld CountPairs: int
assartionCount: tof : ? . z
wschina i + getAssertionldCountPairy)): asserfionldCountPaits
= gatAsszrtionConnt()- asserti anC ozt + setAssertionld CountPairs(in value)
+sefAmertionCount(in value) 1
1 |
5 e e 1 Payload

EhAssecbon

e 7 assertionPair: List= Asszrtion®eplaceBundle Payload AssertionPair=
£ apsert oo ament: KhAzremor Assertondntens
£ grgertonslaizr KEClEm 1 | = gatAssmonPair()
=aeseritonEvidenze: KhEsvidese
£ apsertonSuppar: Khiugpan

Amertionlaiz
replaced Assertionld: String

+ gatAssertioniazrdatal amertiombdetadss
T sabAcsertonbistadnialim v Zus: EbAssartion. Asss ciceieladata)

+ aztAssernion omtos T esseriionCostent y s # pesertion: KbAzsertion 1
+ gatdererbonCemtes{in value: EbAssertion AssertionC ot et ; "
+ getAsseronC aim): asserkonClaio = - getPeplaced Assertionld): replaced Assertionld
+ serhzsemt omClaiendinvalue: BhClaim) + H Cig e T

: " - setfeplaced Assortionldiin value)
+ gatAssestionE videnrelk asmentionEvidence F* i m ; e ; 4 d
+ satAcceronEvadence myvaue: EbEvidence) 1 SCLAEE:HL-DEI.[:I. assertion
+ @zt AssertinnSuppori(] ErertionSuppan +setAssertionin 1'3_|_u|_-:|
+ arrdsseiionSupperiin valhe - Bhwppem) i i
1 1 { 1

i | !
AssertionMetadata

KlClaim KtSupport | | KhEvidence AsertioeConteil

Figure 48. KbUpdate class diagram part Il

C. WEB TIER

In this section we will describe the design of the WSDL documents for our client
and services. We employed two WSDL files; one for KbUpdate called
STEPPortTypes_12b.wsdl and another for both ExplanationGet and StatusReport called
UMDServices_12b.wsdl. We did this because our prototype, discussed in Chapter V,
consists of two separate applications; one for the Web services and the other for the Web
client. The WSDL files were modified and renamed from the documents originally

generated as stepGovServices_12.wsdl and stepPortTypes_12.wsdl (Tong, 2009). The

82

binding and service sections of the UMD Services WSDL were left for us to define since
they pertained to our network protocol details. Sub-sections 1 and 2 show the main
sections of the WSDL files.

1. UMD Services

<wsdl types>
| <xs:schemax

| exsiimport namespace="http://www.iarpa.gow'SCIL/STEP_Schema” schemalocation="UMDSchema_12b.xsd"/>
. =/xs:schema>
<fwsdl:types=
<wsdl:message name="ExplanationGetRequest”>
: =wsdlpart name="omnia" element="stepd:ExplanationGetReguestMsgPart"/>
<fwsdl:message>
<wsdl:message name="ExplanationGetResponse”=
: <wsdlpart name="omnia" element="stepd:ExplanationGetResponseMsgPart"/>
<fwsdl:message>
<wsdl:message name="5tatusReportRequest”>
: <wsdl-part name="omnia" element="stepd: StatusReportRequestMsgPart"/>
<fwsdl:message>=
<wsdl:message name="StatusReportResponse”=
: <wsdl:part name="omnia" element="stepd:StatusReportResponseMsgPart"/>
</wsdl:message=

Figure 49. UMD services WSDL part |

Figure 49 above shows the types and messages sections. The Schema document
was generated separately and is referred to in the types section by name. The messages
section shows the part name 'omnia’ to represent the name of the request and response
messages to be used between service and client. Figure 50 shows StatusReportPortType
and ExplanationGetPortType as the portTypes to be used by the client. The message

types previously defined are referenced here as the input and output messages.

83

<wsdl:portType name="StatusReportPortType">

<wsdl:documentation=Core service. Hosted at the Performer site. </wsdl:documentation:

<wsdl-operation name="StatusReport">

<wsdl-documentation=Request-Response. STEP AppServer requests a status report from Performer team service <fwsdl-documentation=
<wsdlinput message="steps:StatusReportRequest"/>

<wsdl:output message="steps:StatusReportResponse"/=

<fwsdl:operation=

<fwsdl:portType=

<wsdl:portType name="ExplanationGetPortType"=

<wsdl-documentation>0ptional senvice. Hosted at the Performer site. </wsdl-documentation:

<wsdl-operation name="ExplanationGet"=

<wsdl:documentation=Request-Response. STEP AppServer requests an explanation from Performer team service.</wsdl:documentation=
<wsdl:input message="steps:ExplanationGetRequest/>

<wsdl:output message="steps:ExplanationGetResponse’/=

<fwsdl.operation=

<fwsdl:portType=

Figure 50. UMD services WSDL part 11

<wsdl:binding name="5StatusReportSoapBinding” type="steps:StatusReportPortType"=
=so0apl2:binding style="document” transport="http://schemas xmlsoap.org/soap/http"/=>
<wsdl:operation name="StatusReport">

<spapl2.operation soapAction="statusReport” soapActionRequired="true" >
<wsdl:input>

<soapl2:body use="literal"/=

<fwsdl:input=

<wsdl:output=

: <soapl2:body use="literal"/>

</wsdloutput=

=fwsdl.operation=

</wsdl:binding=

<wsdl:binding name="ExplanationGetSoapBinding" type="steps:ExplanationGetPortType"=
<s0apl12:-binding style="document" transport="http://schemas xmlsoap.org/soap/http"/=
=wsdl:operation name="ExplanationGet">

<spapl2:operation soapAction="explanationGet" soapActionRequired="true"/>
<wsdlinput=

<soap12:body use="literal"f>

<fwsdl:input=

<wsdl:output=

: <soap12:body use="literal"l>

<fwsdloutput=

</wsdl.operation=

<fwsdl:binding=

Figure 51. UMD services WSDL part 11

84

Figure 51 shows the binding between the service interface descriptions
(StatusReportPortType and ExplanationGetPortType) to the their respective service
implementations (StatusReport and ExplanationGet). Note that we are using SOAP over
HTTP.

Finally, Figure 52 shows the service section combining the previously defined

port names and binding names to our network address creating the end-point.

=wsdl:serice name="UMD_Senice"=

=wsdl:port name="StatusReport” binding="stepn:StatusRepontSoapBinding”=
<goapl2:address location="http://10.3.21.97:8080/LUIMD/IMD_Service"(=
<fwsdl:port=

=wsdl:port name="ExplanationGet" binding="stepn:ExplanationGetSoapBinding"=
: =<spaplZ:address location="http://10.3.21.97:8080/UMD/UMD_Service"/=
<iwsdl:port=

<fwsdl senice=

Figure 52. UMD services WSDL part IV

2. UMD Client

Figure 53 shows the KbUpdate WSDL. Aside from the name changes in the
messages, ports, and binding sections that reflect the KbUpdate operation, the structure of
this document is the same as the UMD Services WSDL. The service section provides the
combination of the binding and port names and also specifies the network address of the

external service.

85

<wedlypas>
s schemas
| <ustimport namespace="http:/fwwaiarpa. gowSCILISTEP Schema” schemalocation="stapSchema_12b.xsd"/>
</xs:schema>
<fwisdl types=
awedl:message name="KblpdaleRequast™>
| wsdpar name="omnia" slementi="slepd KblpdateRequestMsgPar™ >
<fwsdlmessage>
<widl:message name="KblpdateRespanse™>
| <wsdpan name="omnia" element="stepd KbUpdateResponseMsgPar 7>
<iwsdlmessage>
<wzdl-portTypa name="KblpdatePret Type™>
ewsd:documantation=Core sarsca. Hosted on tha STEP AppSarver. <iwadl: documantation=
=wsdloperation name="Kbllpdate™>
swsdldocumentation>Riquest-Response. Performer leam serice pushes asserions to STEP AppSenver </wedtdocurmnentation=
cwsdlinpul message="steps Kbl pdateRiequest’f>
| =wsdloutput message="steps Kbl pdateResponse >
<iwedl operation>
<fwadl:por Type>
awsdlimport namespace="hitp-Wwww iarpa. gow!SCILBTEP_PartTypes” location="stepPortTypes_12h.wsd(">
<ysdl:binding name="KblUpdateSoapBinding” type="steps:KblpdatePorType™>
<soap1Z:banding style="document” trans pard="hitp:schemas xomizoap.org/soap/hitp’f>
<wsdl|:aparation name="Kbllpdate">
| <spaplZ.operafion soaphction="kblUpdate” soapictionRequired="tnye"/>
| ewsdkinpul=
| | =soapiZbody use=Tteral"/>
| chwsdlinput>
<wsdb-output>
| <sap12 body use="Titeral"/>
<fwidloulput>
<hwsdl: aparation:
=fwsdi-binding>
<wadl sanice name="StepAppSanerSenice™>
<wsdl:port name="Kblpdate™ binding="ste pn Kbl pdate SoapBinding ">
! <spap!2 address location="itp//10.3.21, 1:8084/STEP/StepAppSenerSenice />
<fwadlport>
<hvisdl:senacas
lwaddefiniions>

Figure 53. UMD client WSDL

PRESENTATION TIER

We now shift our focus to the presentation tier, which contains the components

that create and execute the Ul necessary for our users to communicate with the other tiers

in the system.

Based on the requirements from Chapter Ill, a closed Web application is

necessary to implement the Ul. Using a closed Web application to serve as our Ul means

that only our users will be presented with the Web pages to interface with and execute the

system functionality; similar to how a person would use the Internet to manage his/her

86

personal online banking account. The UMD performer team users will perform the
system operations by using the Web pages to interface with the local system’s business
logic through an HTTP connection. The interaction is initiated with a request for a Web
page by the user’s Web browser. The local system’s Web server will return the requested
Web pages to the users for execution. The File system manages the HTML files for the
Web server and the Application server executes the server-side business logic (Conallen,
2003). Figure 54 shows the interplay among the components.

Figure 54. Web architecture (From Booch, 2001)

The remainder of this section is separated into two sections. In Section 1, we used
the Microsoft PowerPoint 2007® application to develop a conceptual design of the Ul
Web pages. We also discuss the intended functionality behind each Web page and step
through what a user would encounter while using the Web application. Section 2 shows

the respective Web pages’ UML class diagrams.
1. Ul Web Pages

We begin our design of the Ul with another UML modeling tool called an
Activity Diagram. This diagram displays the workflow associated with our Ul. As
depicted in Figure 55, the basic structure of the Ul allows a user to sign in and view the
main menu. The main menu provides the user an option to perform one of several system

operations. Finally, the user can sign out of the system when complete.

87

Thes make T oo s of B sarbons A oet o
£ acmriang &or s uee In oo from
2 oS et hewima), ® R Tha dhepbegm e

s
) Hizn In e mzahi iy Hatuese ard 3 ascaon shesang
-_1_-/ racanl arirty
o et
T "-Oﬁ"rllllll«.ll.lji
lh.l |l.'i=<|ll.l|'~ e ?

"'\.IL 1 ot |

User Operations
- g I
- 2 r:
| Ll slon v dsseriie |/'P-‘I t A= Aubninisirzlor seis capebility stafus |
TR |- (MR
fl:'cl.r Ptk quseserion I
- -
T . e
h -~ s
3 . § Dser wdits iIHﬂ.‘IliUI":“:I __.--""-
\ >
\\\. .-'"-'...
e T
. WL S
", .___.-"
= =

Figure 55. Ul workflow

a. Sign In
The first step for our users would be to sign into our system through a sign

in page that requires the user to input a username and password. Figure 56 displays our

proposed design of what that page would look like.

88

SOCIO-CULTURAL CONTENT IN LANGUAGE
UMD PERFORMER TEAM

(MEST RN

Pagzwond

Sign In Cancel

Figure 56. Sign-in Web page

b. Main Menu

Figure 57 represents a preliminary design of the main menu, which is
displayed following user authentication. The main menu will display the status of the
core system capabilities, show the ten most recent activities, provide the user a means to
exit the system, and provide the user hyperlinks to navigate to the desired Web pages to
perform the system functions. For clarity purposes, we designed the main menu image to
show only four activities instead of ten. A DTG is associated with the activity. The newer
and older buttons under the recent activity will allow the user to view additional activity
not displayed. A color-labeled display on the top right corner shows the current state of

the core capabilities. The buttons in yellow serve as hyperlinks to the Web pages.

89

Cirent Statis;
UMD K 1 plate Availahle
SCIL Explanation(iet— Unavailahle
LataPush — Unsupported
Home I Stove aesertion | Teamsfer assertion " Falit azsertion | Tlser acooumits Cﬁﬂ:‘:ﬂ“

Recent Activity:

Date & Time Activity

2010-01-10T09:35:12-05:00 Capability Status queried

2010-01-05T17:00:00-0500 Explanabion lor asserhon A12304 guened
2009-12-11T10:45:41-05:00 Local assertion 2 forwarded and retirned as A453X4
2009-12-08T13:00:01-05:00 Aswertion 3 stored

R

Mewer MNiler

Sign Ok

Figure 57. Main menu Web page

C. Store Assertion

If the user wishes to store an assertion that has not been previously stored
into the local database, the user would select the Store assertion tab. The application
would then provide the user a Web interface to input the assertion data. For
demonstration purposes, we provide two pages shown in Figures 58 and 59. However, the
data could be input by using just one Web page. When complete, the user is given one of
three store options to execute:

o Store—Stores the assertion in the local database only.

o Store and Transfer—Stores the assertion in the local database and then
executes the KbUpdate client to add that assertion to the external database.

. Store and Replace—Stores the assertion in the local database and then
executes the KbUpdate client to transfer that new assertion over to the

external database in order to replace an existing assertion.

90

Store Asseriion

CONTEXT Homree Mame:
Language Uze Dolnailr_ Sonrce Langnage
Azzertion Flag: @ Public @ Privale Source Medinm

Sonrce Location: _ Sonrce Tvpe:

Sl _

CLamM

speaker Entity Type [Target Entity Trpe:
Speaker Entity ID- _ Target Entity ID:

Target Attribnte Tyvpe: _

Figure 58. Store assertion |

. N

Dasplay Tvpe @ Strong Confidence

v [o N

EVIDENCE DOCUMENT

SupPORT

neccicatone [Tcarcmtor [
SRR [

Figure 59. Store assertion 1l

91

When the user selects the option to Store and Replace, the application
would display the Web interface depicted in Figure 60. The interface allows the user to
search for the assertion by using one of two search options: by external ID or author. The
output of the search would be displayed in a form that allows the user to select only one
assertion that is currently in the external database. Upon selection, a short summary is

displayed for the user to view before replacement.

Replace Assertion

Search for the agsertion that will be replaced by

External ID Search Anthor Search

select the azsertion that will be replaced.
External I Local I} Author
A12EGT 3 ThomagTones 2010-01-05T1 7:00:00-05:00

ATEBG4 ThomasFones 2010-01-10T1 §00:00-05:00
B7ER45 5 ThomagJones 2010-01-1 5717 @00:00-05:00

10 will replace ATEB64

Eeplace Back Cancel

Figure 60. Store assertion |11

d. Transfer Assertion

The Transfer assertion operation will execute the KbUpdate client for
assertions that have been previously stored in the local database only. Figure 61 shows,
upon selection, that the application will provide the user an option between sending an

assertion not currently in the external database or to transfer an assertion meant to replace

92

an existing one. Figure 62 shows the interface upon selection of the Send a new assertion
option. The user is provided a means to search for and to select the assertion(s) to be
transferred. If the user selects the option to Replace an existing assertion the user will
first choose the assertion that will do the replacing using a Web page similar to Figure 62.
The user will then select the assertion to be replaced through a Web page that looks

similar to Figure 60.

Chooge one:

© Replace an existing assertion

@ Send a new assertion

Continue Cancel

Figure 61. Transfer assertion |

93

TI'.‘II IIHFFI' :‘.Hﬁ{-"l“ i 1]]

searclitor the assertion(z) that will be zent by

Lacal ID Search Author Search

Select the azzertion(#) that will be forwarded:

. Liocal ID Author
4 Robert Uecker 2010-01-10T18:00:00-05:00

Main
Mhenn

Transfer Back

Figure 62. Transfer assertion Il

e. Edit Assertion Data

The Web interface under the Edit assertion operation will allow the user to

select an assertion based on a search for either the author or the assertion local ID. The

user would then have the option to either edit or delete the selected assertion.

After a user selects an assertion and chooses the option to edit, an interface

capable of being edited, similar to Figures 58 and 59 above, will appear with the text

fields populated with the current assertion data. The user could change the data in the text

fields and save the new data. If an external ID was associated with the assertion selected

for editing, then the KbUpdate client will execute and replace the assertion in the external

database with the newly modified version; otherwise the newly edited assertion will be

stored locally with the same local ID. Figure 63 displays the Edit Assertion Web

interface.

94

If the user selects the delete option, and there is not an external ID
associated with the assertion, then the assertion will only be removed from the local
database. However, if there is an external ID associated with the assertion to be deleted,
the user will receive a prompt, as depicted in Figure 64, to decide between deleting an
assertion from the external database only, or deleting the assertion from both the local
and external databases. In either case, the external ID for that assertion will no longer be
recognized by the external system, and will be removed from the local database. The user
can also select the help button to understand the ramifications of his/her decision. In
either case, the KbUpdate client will be executed to delete the respective assertion

referred to by the external ID.

Edit Assertion

Search for the azzertion to be edited by

Local IDv Search Author | Search

Select the asserhon to be edited:

ExternalIld LocalIld Aunthor
Al1256T7 3 Thomas]ones 2010-01-05T1 7:00:00-05:00

ALZZBTR 1g Bobert Uecker Z010-01-10T1 §:00:00-05:00
BaSGY 12 Gladve Enight 2010-01-1 5707 Lo00:00-05:00
CAG7 O b Frederick Fender 2010-01-01T20:00:00-05:00

Mlain

Edit Delete Mot

Figure 63. Edit assertion

95

Choose one:

@ Delete from external database only
@ Delete from both databases

Delete Back Help

Figure 64. Edit assertion 11

e. Set Capability Status

The Set Capability Status operation will only allow an administrator to set
the capability status. If a non-privileged user would attempt to access this operation, the
application would generate a message for the user stating that the user does not have
those privileges. The Web interface will show the administrator three sets of radio
buttons per capability. The administrator would select the appropriate status per

respective capability, and then save the operation (see Figure 65).

96

Select the eapability status

@ Svvailable

KBUPDATE @ Lnavailable
@ Unsupported

@ Available
DATAPUSH @ Unavalalle

@ Unsupported

@ Avalable
EXPLANATIONGET @ Unavalalble

@ Unmpported

have Cancel

Figure 65. Select the status

f. User Accounts

The User Accounts operation is also restricted to administrators in the
same way as setting the capability statuses. When selected, the administrator will be

given the option (Figure 66), to either create account or to modify account.

If the administrator selects the option to create account, the application
will display an interface with text fields for entering the user’s personal data. When
complete, the administrator would save the user account information, thereby storing the

data in the local database. See Figure 67.

If the administrator selects the option to modify account, a Web interface
listing all of the users will be shown. The administrator would select the user account to
perform either a modify or delete function (Figure 68). If modify is selected, the
administrator will be presented with an interface capable of being edited (Figure 69), but
with the text fields populated with the user’s account data. The administrator can make

changes as necessary and save the changes, thereby updating the local database. If the

97

administrator selects delete, the application will prompt the administrator for
confirmation. After confirmation, the user account data will be permanently removed

from the local database.

Choose one:

@ Create account
@ Modify account

Clontinue Cancel

Figure 66. User account |

{reate Account

Emaul: I:I (Serves ag fle User 1L

Create Cancel

Figure 67. User account Il

98

Mod: iy Account

Name First Name LUser 1D
Thomas IThomas@myEmail.com

Robert rilecker@myEmail.com

Cladys gknight@myEmail_.com

Frederick

frender@myEmall.com

Basmas

Delete Modify

Cancel

Figure 68. Modify account

User Account

First name: [

Lazt naune I

Email: [homa:

Passworil: I

Fe-tvpe Password: I

Update

nail.com J (Serves as vour User 1D}

Cancel

Figure 69. Update account

2. Ul Class Diagrams.

We now present the models of the Ul Web application using UML class
diagrams. It is important to note that the original UML standard notations were never
intended to represent Web pages. It was not until the Web Application Extension (WAE)

99

for UML was adopted that Web pages were capable of being represented by new
modeling notations. Jim Conallen, co-founder of UML, states that the extension to UML
is expressed using the following mechanisms: stereotypes, tagged values, and constraints
(Conallen, Modeling Web Application Architectures with UML, 1999). In his book,
Building Web Applications With UML Second Edition, Conallen describes these
mechanisms as follows:

Stereotype, an extension to the vocabulary of the language, allows us to

attach a new semantic meaning to a model element. Stereotypes can be
applied to nearly every model element and are usually represented as a

string between a pair of guillemets: « ». However, they can also be
rendered by a new icon.

Tagged value, an extension to the property of a model element, is the
definition of a new property that can be associated with a model element.
Most model elements have properties associated with them. Classes, for
instance, have names, visibility, persistence, and other attributes
associated with them. A tagged value is rendered on a diagram as a string
enclosed by brackets.

Constraint, an extension to the semantics of the language, specifies the
conditions under which the model can be considered well formed. A
constraint is a rule that defines how the model can be put together.
Constraints are rendered as strings between a pair of braces: {}.

Conallen defines three core class stereotypes: Server page, Client page, and
HTML form; all three of which comprise the aforementioned mechanisms. These classes,
and the stereotype class associations described in Table 9, were used to design the class
diagrams in the following pages. Figure 70 shows the WAE class diagram for the main

menu.

100

Table 9. Stereotyped associations (From Conallen, 2003)

Stereotype

Description

«link»

A relationship between a client page and a Web page. The target may be a client page class

or a server page class.

«builds» A directional relationship between a server page and a client page. This relationship
identifies the HTML output of a server page’s execution.
«submit» A directional relationship between an «<HTML form» and a server page. It references a

server-side resource. However, when the resource is requested from the server, all the

form’s fields attributes are submitted, along with the request where they are processed.

«redirect»

A directional relationship between one server page and another server page or a client page.

This association indicates a command to the client to request another resource.

=Server Pages= =eClient Pages> =<Fom>>
o e Signin SignInForm
Connetlion S
« nuserld; String "I ==toxt= userld: Siring
password: String <olexl== password: String
showSigninForm() getMainMenu() i

gnulumit==

ik <<Client Page>=> f
Storedszertion S MainMenn <<Server Pases>
T Mainhdenu
[s | =] Ik b=
Transfer) -
Assertion showStatus()
aelink=s showACtiVity() showhdainhlenu)
. e show DTG
EditAssertion |
g ry
i i
SetStatus [< -
~elenl=m polivity: Siring
; <<linkc>> cctexi= dig: Date Time
ManageAccoumts <textr kbuStatus: String

il dpSiatus: Sinng
<text egStatus: String
=gubrml= Next
<<gubmit>> Prior

Figure 70. Main menu
101

From the main menu, the user could choose among the five operations. Figure 71
shows the interaction between the classes for the case when the user chooses to store an
assertion. This model demonstrates that a user can still replace a current assertion in the
external database after its initial creation at the local level. As per the requirements in
Chapter 111, the diagrams depict feedback in the form of a Web page after the successful
completion of the respective operation.

= henl Pages ==Form==
StorsAssertion AcgzertionTretails

L 4

=etaxt== lud: String
~rradioFution=> llag: Boolean
=text== sName; String
==text== sLoc: String

e b= shviod: Siing

<<text=> sLang; String

AssertionAdder]) seiWisiblel Tre)

nnSerl_.-erPagex--' _ T,
Update <<gubmit= stome

=ognbrnit= siore Trans fer

==ghmit== siomeReplace

writeDatal)

kbUpdate Add) < "('.‘]i:am Papes=s .
StoreAssertionConfirmation

| ==redirect==

<=huild==

= <=Client Pagss> showMessagel)
ReplaceAssertion
ZZFarm>>= »
ReplaceForm | - cepedirect=s
* showAsseriion)

. y select() 1
<rheckbox == assertion: KhAssertion e Gapver Pagess
=<text=> ald: String T Renl H,:.g a
wtente= asnthar: Sting 1
cotext>> alTG: DateTime -
=<submit+=> search et
<=hrutton==> replace kbUpdateReplace()

Figure 71. Store assertion

Figure 72 shows the user’s choice in transferring an assertion that has only been
stored locally. Again, the user does have the option to replace an assertion currently in
the external database; that option is a continued in Figure 73.

102

{(Clicnt Page>> <<Form>>
UserOption OptionForm
1 <<radioButton>>xfer: Boolean
: < 1 g 1
showOption() radlo]?»u‘c’ion Tep: Boolean
<<submit>> continue
<<submit>>
<=ClientPage==
Transfer <<ServerPage=>
assertil Ninng <<build>> TransferAssertions <build>> ;
name: String ReplaceAssertion
select() showAssertions()
; 4
<<Client Page>>
TransferConfirmation
==Form=>
TransferForm
<<submit>> showMessage()
<<checkbox>> assertion: KbAssertion <<Server Page>>
<<text>> ald: String Tianiror
<<text=>aAuthor:: String <<redirect>>
<<text=>aDTG: DateTime
<<submit>> continue
kbUpdateAdd()
Figure 72. Transfer assertion
aﬂ']ll:;j:ft B <oClient Pages= S s
Replace Assertion s ol
assertld: '::trmg - cogheckbonso assetion: KhaAssertion
it Sy 1 seotextai axld Sring
: sfexl== aAuthor: Shing
i selec 5
select(sclect() ctent= aldT: DateTitne
i 1 <agnbmitss contime
el

- Famess
I'arsferForm

==herver Pages=

A uthos:: St
= aDTG: Dt T
cugupbmitts contime

ConlBeplace

G N T

showAssemianal

Figure 73.

<= CHent Page=>
ReplazeConfinmation

<redirect==

<crgubmits

nn

= Berver Papess
Replace

chowdeasaged)

103

Transfer assertion 11

khUpdateReplace(}

Figure 74 shows the user’s option to either edit or delete an assertion from the

databases. The form DeleteForm provides the user another option, to remove

assertion locally only or from the external database, too.

= hent Pageo
Editfsserion
Inc:AlTr String
mame: String

s Agsrriees

Tl Buge e
Edn

|
assertm Adder | s= % ahl= [Tme 1
1

]

S
EditFarm

<< suhmit=s

=echechthons> aszerti on: KbAssemtion
=ent== exld: Swing

e Fommere
Asser oeForm

==1eat= = lud: Sring
““radioBation™> tiag: Bodlean
LT Al e g

==qet= = shoet Swing
et shied Sring

“erente Lany, Steing

gubud 55 Save

the

“atExto lacld: Sering '
st afuthor: Ering -
“vipxt aD TG Date Tune el P Rl 1| P
“agubanate sdit DeletaOption Drel et=Form.
w=qubmir="= delete - -
1 <adiobunon= = opiion: Beclean
b e smbhmii™ dalete
<esubmit=: oy
| e 4 A showOption(}
e T . T
k_ s Seryer Pageoer
Edir
coEerver Pagel>
sbewDara’ Dielete
lc'l:-'[_,'-]_ﬂ]:lle-De-.fane-l;]
N rEmoveAsscrtion)
o oServer Page~x
LZanbimites Serpdirsct= ceredineors=
khtipdateR cplace() =
writelJate() <=lizntPage=
Confirms Hon
showhdessags()
Figure 74. Edit assertion

Setting the capability status requires the administrator to choose from one of three

sets of radio buttons per capability. The selected button is represented in the form
DeleteForm. See Figure 75.

104

- <=<Formn=:
<= lient Pape== DeleteFortm

Statuses

L]

<<radiobutton=> egStatus: Boolean
=eradobution=> dpStatus: Boolean
sorgdichution== kbiSiatus: Boolean
<esubmit=> save

showStars()

=gt
==Client Page== c<Server Pages>
SatusConfimmation GptSitatus
mid inect
showhessape() setStams()

Figure 75. Set capability statuses

Finally, the administrator is given the option either to create a new user or modify
an existing user account. See Figure 76.

<aClient Page==> seForm== R i
UserCption OptionForm =<submit=s G ;;:ieflh‘f: B
ifylser
i ceradioButton==> creats: Boolesn
¥ P i (o= i furs
showOption() ; Iadmj__m[.tcn _deif} ERuelan showAccounts()
<o EUDME T Contine
LN =<tild=
RS T ey ;
.I_J
<= lienl Papeses - ==Client Pags==
Createlser ==Berver Page=> Modify User
frstNarne. String 4 sebuld= Createlser 3 1
lasiMame. String :
password: String selectUser()
zmail: Sfring showFoerml)
" <oForrnss
1 seClen Page>> Moditvliz==rForm
- CreateConfirmation cctheckboxs user: Lser
o For o e 1Fnr
cecpedirect=- Eombb gLy
CreateLlserFomm - wsubroitass delets
: | showddeszamge()
c<text> firstName: Sting ==gubmites
w<text~> lasiName: Strine ! W
weteRt pagswand: String <eRerver Papes
eyt email: String “oBerver Pape== Mo diﬁ;h
“esubmit=> save CreatelU ser wemslirect== k:
syt - “1'iTEJ“LEEUﬂ.tﬂﬁ
= wiiteAceDatal) removeAcclata)

Figure 76. User accounts

105

E. SUMMARY

In this chapter, we took the requirements from Chapter Il and used them to
provide the readers our proposed system design. We began our design with the Database
tier, wherein we summed up and displayed the attributes, entities, and relationships of the
system in an ER diagram. We followed up by using an algorithm to map the ER diagram
into an RDS, which we will use to create our database tables. Our next step was to design
the Business Logic tier by presenting aspects of our XML Schema and generating the
UML class diagrams that express the functionality of the core operations of our system:
the StatusReport WS, the KbUpdate client, and the ExplanationGet WS. For our Web
tier, we presented the WSDL documents that we will use as our endpoints. Finally, for
the Presentation tier, we showed the reader our design for the Web pages to be used by
the local user to operate the system, followed by the Web application UML class
diagrams. In Chapter V, we present our prototype of the system to be used by the UMD

performer team.

106

V. PROTOTYPE

In Chapter I, we described the basic system features that the UMD performer
team would need in order to contribute to the SCIL program. The first focused on the
local user’s management of the assertion data that would allow for the collection, storage,
and modification of the assertion prior to distribution. The second was to allow for
remote access to the data. This ability is realized with the use of our core Web services
described in Chapter Il (StatusReportWS and ExplanationGetWsS). The third feature was
the ability to transfer the data to the external knowledge repository over the Internet. Our
Web service client, KbUpdate, has been designed to manage the transfer of assertion data

to the external database; this includes the ability to replace and delete assertion data.

In this chapter, we will describe the prototype of the system. Our prototype
consists of a database store that supports our two core Web services (StatusReportWs
and ExplanationGetWsS), and our Web service client (KbUpdate). The prototype also
involves the application server in which the Web services are deployed. Our objective for
this prototype was two-fold. First, we wanted to provide a proof of concept
implementation for both Web services and WS client in support of the preliminary
engineering tests. Second, we wanted to provide the stakeholders with a working system

capable of being modified and upgraded for their future use.

Our system was developed in an Apple® Macintosh desktop computer running
OS X. This chapter begins with the implementation of our local database. We will
describe the database tables we developed to interact with the business logic of our
system. Next, we present our Web services followed by our client. Using screenshots of
the applications, we will walk the reader through the sequence of events that transpire in

order to execute each operation.
A. MYSQL DATABASE

Although the SRS in Chapter 111 described the DBMS to be a Relational-type, we

also researched into the feasibility of using an Object-Oriented Database Management

107

System instead. In the end, we selected the MySQL Community Server version 5.1.49
DBMS (www.mysgl.com) for our prototype because the database is, at this point in time,
required to handle only simple data types (i.e., numbers and strings). This edition of the
MySQL DBMS is also open-sourced, and is compatible with the NetBeans Integrated
Development Environment (IDE), which we used to develop our applications. Based
on the RDS we designed in Chapter IV, we constructed a total of six tables to support
our system operations: status, assertionData, claimTarget, contextDataSegment,

evidenceStatements, and supportTechTerm.

1. Status

Figure 77 displays a description of the status table that we generated using SQL.
The Field column on the left holds the names of the columns in the table. The status table
is queried for all six values whenever the StatusReportWs is consumed by the external
client. The DTG columns are separately updated with the successful execution of either

the KbUpdate or DataPush clients or when the ExplanationGetWS has been consumed.

Figure 77. MySQL status table

2. AssertionData

Figure 78 represents the assertionData table. This table holds all of the assertions
that are referenced by both locallD and externalID. However, not all of the assertion data
can be found in this table. We needed to generate four other tables to hold the remainder

108

of the data because those tables would be required to hold at least one row of data per
assertion. To handle this one-to-many relationship, we created a foreign key called
'locallD' in claimTarget, evidenceStatements, supportTechTerm and contextDataSegment
that referenced locallD from assertionData. This relationship allowed for the entire
assertion data to be inserted into and read from our database tables. Figure 79 shows the

four additional tables.

Figure 78. MySQL assertionData table

109

Figure 79. MySQL assertion-related tables

B. UMD OPERATIONS

Now that the reader has seen our underlying data store, let us turn to the execution
of the three core prototype operations. We designed our applications with the NetBeans
IDE version 6.8, an open-source application development tool, using the Java'™
Development Kit 6 update 20. Both Web services were developed under one Java Web
application project, entitled UMD, and subsequently deployed to the open-source

Glassfish Web application server version 3. The program required to manage the

110

assertion data and the capability status was developed using the Java Standard Edition
application called NPS_SCIL. A rudimentary command line Ul supported by Java Swing
GUI components were developed to assist the local user in running the program—the
ideal Ul being the Web application designed in Chapter IV.

1. StatusReport

a. Setting the Status

A local user can execute the NPS_SCIL application by running the
NPS_SCIL.jar file created from the compiling process. As displayed in Figure 80, upon
execution, the user is presented with a set of options. Selecting the 'update’ command will
generate a window for the user to select the appropriate status per capability. When
finished, the user clicks on the 'Okay' button that executes an excerpt of the Java code
displayed in Figure 81, which calls the method named writeCapabilityStatus(), displayed

in Figure 82, to insert the desired status values into the database table status shown in

Figure 83.
[i, Termenal — java - B3a23 A
Ta modify on assertion from external Enowledge Bose, Eype the word: ‘medify'. | wbupdate
To quit type: 'quik',

o) Anilabile
ik
church:- onartelld jeva -jar "/sors/omartel L/Downloods MPL_SCTLA di stWPE_SCTL ., jor™) Cmavadabis
To store o new Assortion, tyoe the word: “sbore” .
To update the status of owr core copabilities, type the word: “update’, () Wasupparted
To modify on assertion from externnl Enowledge Base, type the sord: “modify’.
To quit type: 'k’ CaksPush

=

te O bl

User executes the NPS_SCIL. jar B Unsvaiatie
file. L unnppertad
church:— cnartelld jova -jar "/sersSemartel 1/ Downloods NPS_SCILS di sb/HPS_SCIL . jor
Ta store o mex Assertlon, tyoe the wmord: “stoee’. Explanationtet
To update the status of ow- core copabilities, type the word: “updobe’.
To modify on gssertion from externol Knowledge Base, bype the mord: ‘modify’. 1) duniaila
To quit type: ‘guk’.

() Wmavaiaile
update () ussupgarted

User enters ‘update” which 2enerales the Ul

o Okay 1 [Cancal }

Figure 80. Executing NPS_SCIL.jar

111

if (jRadicBuctond.isSelecred(}){
dpStacus = ("Lvailabie"):

1 elese if [jRadicButtonS.isSelected())l
dpStatus = ("Upavailable®);

} elae |
dpScacus = ("Oasupported®)

e

if (jRadioButtonT.isSelected ()}
egStatus = ("Availakle"}:
} elsm if [jRadicButtonf.isSelectad()){
egScacus = ("Unavailable™)}
l-alse {
egscacus = ("Unscpportedn)
}otry
DatabaseConnection con = new DatabaseConnection():
con.writeCapabilityStatus (kbuStatus, dpStatus, egScatus):

JoprionPane. showMessageDialog(null, " The local status has been updeced."):
System.exiti0);

Figure 81. Method call to write the statuses

public void writeCapabilityStatos (Scring kb, String dp, String eg)l throws Exception 4

Scring SgLSemel = "UPDATE statos SET kb

r-

4 atatus = "M.concac(kb}+"', "o+
dp scatus = 'T.coneat{dp)+T', eg status = "Tooconcat (eg)+"'":
tey

Clasa. forName (drivertame) ?

con = DriverManager.getConnectieon(URL, USERNAME, PASSWORD):

stmtl = con.prepareStatement (2glScmcl)

stmtli.execatelipdate();

t cacch (SQLEXception &) {
e.print3tackTrace ()
} finally {con.close():}

}

Figure 82. Connection to the database

Figure 83. Status table after execution
112

b. The Web Service

The Web application can be executed by running the UMD.war file
generated from the compiling process. Prior to deploying the WS to the Glassfish server,
we tested it by using the open-source software called soapUl version 3.0.1
(www.eviware.com). This software allows users to act as clients and consume Web
services over the Internet. This was important to us because we needed a way to
determine if the correct data was returned upon a query from the external client. Figure
84 shows the soapUI split screen interaction between the client’s request on the left and

the StatusReportWS response on the right.

Figure 84. Testing StatusReportWs

Following the successful test, we deployed the UMD.war file to the

Glassfish server to be consumed by the external client, as depicted in Figure 85.

113

Applicaniong
A L B el bastsE4E) cenman index 5f & [18 Caogle
M B dpple Yahoo! GoogleMaps YouTube Wokipedia Papulary STEP = Login

Homa® * Anact:

U admin | Domain: doraind Senvar: looadhoss

GlassFish™ Server Open Source Edition

Applications TTMD Weh application containing
Aoplcelions con be ermarprise oy ! t’he Sl“ t-“.-SRE l:“.".— L"_i'rs

é.“m..-_ - e
& UNDehnanolet ENTT " ‘wek, wensardcos, wd) Launch | Redeploy | Restart
[U e Movtudes [UMCexplanalionGet v ek, wobserios, wld] Louncy | Redeploy | Restan
* i Pesoues
* g JoeC
= g Conmcins
[Resouce Adaper Cocligs g S
* AN Resmumes | LrplanationGetyvs
B ool Sessicns i

Figure 85. Deploying UMD

2. KbUpdate client

In this section, we step through the execution of the KbUpdate client. The
functionality behind the options to either add, delete, or replace was discussed in detail in
the two previous chapters. In this section, we will focus on the ‘adding’ function of the
client. An assertion needs to be in the local database before the update so we will begin

with storing the assertion.
a. Storing the assertion

Figure 86 below shows the execution of the NPS_SCIL.jar file from the
command line. The user selects the option to 'store." The user is presented with an
interactive window to enter the assertion data. When the user is finished, he clicks on the
'save' button, which runs the code that executes five separate SQL statements in order to
store the assertion data into its respective tables, described in section A.2 above. The
system generates a local 1D for the assertion and inserts that ID into all five assertion-
related tables in the same row(s) that pertains to that assertion. Figure 87 shows an

excerpt of the assertionData table that highlights the local ID and the lack of an external

114

ID at this point in the sequence. Note in Figure 87 that the predicate_name and
lang_use_dom columns share the same data; this is because the data entered was for test

purposes.
A .
User executes the NI'S_SCIL st | Percpigy| | ML i
- - " L r v i
ﬂp[l]lcflt]ﬂl] and selects the OPILOR st i D:rswnnjl U'T to enter assertion data |
Lo Lﬂtﬂre,. ragn | Perusmzion e e
iy . Alark Lise. 2 ErdLina: Tactie, Emgatiy
.......... e B v e e B e L i i e i e el
;‘M:i.h:ﬁ;‘l.-{ﬂum’.‘:} Slogapet tam_stormpatrel 2050026208 L00_ANE_P S0 28_20S 100 “E
sl gquit -
Eyc - prTre—
church; - oearkelll jowe -Jor "Asers/orortel Loen koo APE_SCTLAdiseWPS_ 3010, Jar Y CHch eo 1o it miicole A imemency (bore)
To sbore o rw ASSertion, bype ke mord: store’.
To wpdete the stotus of cur core copobilities, Evpe the sord: ‘update’ . suppart
Tex mzli Fy ory eserbion $rm eaternol Knowledge Rose, type the sosd: 'eedidy,
To quit type: ‘gait’. Thaartical | rar:
mulinly ol e gt ook b Ankee o, "Imlmu:ﬂlldhuwwLu-lrulszl:m
shone saften in vebile worps, Empgathy grosvy et of Claldinds particular catsgorny Likog, II
ihe local 10 For this cssartion is 9. Flanes Thamws pend 10 be convinosd by those e Bkt 00 admiee
To forsord khis mow 0sscp -- to the exbermal dotobase, — Y
type "Rt otherwi e pe WIT Tezhaical Teemre redetinition
Twchnical Tirmy Gledi

S wommglhieng Dear & cordain progsety (Fredic oo ko bl assomang i e m
vamuthieg sl Woalogyl
: _s-—-—u ..

Local ID

Daca supp-u

.................... e L

ot up.:rlql.l‘-rrf\.'o:.l pnd s ;ll.ﬂ. mnlr e Hu|.| m’ termitgnes. in Pakistan and

Adphanizian,”

Click here bo sdd mesce Tiottneal G I'_illﬂl" h]

Figure 86. Storing an assertion

rysql= select locallD, dtg, externalll, predicote_name, spesker_id, speaker_type, long _use_dos from ossertionDato;

T sl e S et LS
I locallD | dig | externalll | predicate_rome | speaker_id | specker_type | 'lang use_dom I
= # T = \ = =it == RS, R e +
1 2 | 291@-B7-3@ 13:32:17 | MULL | Persuasion .ﬂ.tten'pt I 1] test | Persuasion Attempt |
1 31 291e-67-32 14:12:18 | MDSDDEInEa | Persuasion Attempt | 1ML | person | Persuasion Attespt |
1 B | 2918-87-31 12:21:53 | NULL | Persuasion Attempt | 1] test | Persuasion Attempt |
i 7 | 2018-87-31 12:35:56 | MULL | Persuosion Attempt | 1| test | Persupsion Attempt |
I 51 Z018-03-03 @3:28:59 | M | Persuasion Attempt | 123 | person | Persuasion Attespt |
1 _9 | 2218-B8-93 @!l:-ﬂ: | Persuasion Attempt | 173 | person | Persuasion Attempt |
AT e T e ry F R T R e S S T RS S e e s S S e e T s s s A e e e s e rE s e e e s m e

Figure 87. Assertion in the database

115

b. Updating the External Database

From the command line, instead of selecting 'store," the KbUpdate client is
run by selecting the option to ‘modify.” The application then gives the user the option to
either add, delete, or replace. The user selects the option to ‘add' and is then prompted for
a message ID and for the locallD of the assertion to be added. When the user submits the
locallD to be transferred, the system reads the respective assertion data in all five
assertion-related tables and sends the data to the external system. Figure 88 is a
screenshot of the Web page generated by the external system’s Web server called the
STEP server, which displays the list of assertions currently in the external database
(Naval Research Laboratory, 2010). For this demonstration, the listing created on 2010-
08-03 refers to the assertion with local ID #9. Figure 89 is a screenshot of another STEP
server generated Web page that shows the specific ID #9 assertion elements following
the successful transfer (Naval Research Laboratory, 2010). The external system generates
and returns an external ID that refers to that assertion, and the local system writes
that external ID into the rows of the five tables that pertain to the local copy of the
assertion that was just sent. Figure 90 shows two of the five tables with external 1D
'UMDb39f431a.'

116

L B LRI ATV T o)

-0

STEP [Powered by SCIL]
Status About Help ' | { Logout J{' Quick Feedback J

Simple Query Query Summary
team: UMD, langUse:

Results (Found 5 current assertions)

Il:'z:;guaga Team - Created Language Visibility
Persuasion , :
Attempt UMD 2010-08-03 English NRL34 Blog Public
Persuasion . .
Attempt UMD 2010-07-30 English NPS/UMD Blog Public
Persuasion . a
Attempt UMD 2010-05-25 Spanish SourceName blog Private
Persuasion ; :]
Attempt UMD 2010-05-25 English SourceName email Privite
Batta—on UMD 2010-05-25 Spanish SourceName blo "
Attempt P g Private

Figure 88. External Web server

117

Assertion UMDb39f431a

'STEP ID: UMDb39f431a Performer Team: UMD Created: 2010-08-03 ‘Version: 1 Public

Language Use: Persuasion Attempt Source: NRL34 Language: English

[£] AssertionClaim
[[] PredicateClaim
[[] PredicateName
Persuasion Attempt
[] Speaker
[] Entity
[id
123
[type
person
[[] Target (type: directed)
[Entity
[id
321
[type
person
[] AssertionEvidence
[[] EvidenceValue
Future Evidence value
[£] EvidenceStatement
[[] ConstituentMultiset
[[] PersuasionTactic
[[tactic
Empathy
[startline
2
[£] endline
3
[5] doc
blogspot.com_stormpetrel_20050326205100_ARB_20050326_205100
[£] AssertionSupport
[£] TheoreticalFrame
This interaction includes use of a redefinition tactu: and an appeal to empathy The persuaswe force of the redeflnmon
tartic comes in ite ahili = ke

Flgure 89. External Web server

aysqls select localll, dig, esternalll, predicete_rome, speaker_id, speaker_type, Lorg_use_don from assertionDaba;

e T T S e e R e e e e e e e e s i ol e o e e e T T e e S
| locelIlh | étg | externalID | predicote_pome | speoker_td | speaker_type | Larg_use_don |
B e e e e e el e e e e e e e e S e e e
| 2 1 2013-67-3@ 13-32:17 | NILL | Persunsian Attemat | 1| test | Persuasion Attempt |
! 30 2ME-07-30 14:12:18 | MDGMEIbEa | Persuasion Attempt | 1701 | persan | Persussion Attempt |
! &1 201@-87-31 12:21:53 | MULL | Persyosion Attempl | 11 kest | Persuasion Attempt |
| 7 1 2018-A7-31 12:35:56 | MULL | Persuaston Attemat | 1| kest | Persussion Attempt |
| B | 2013-pE-RE @9:28:59 | & | Persunsion Aetemat | 175 | pertan | Persussion Attempt |
I 9 | 2x3-BE-B3 20:43 Ftr!.uuii.un Attemat | 125 | persan | Persunstan Attempt |
W e e e e e T e e e R R e S e e e e e e T S e e e e e e e ek

& orows in set 8,08 sec)

mysqls select externallD, locallD, stort line, end_lune, tectic from evidenceStatemends;

= Do o e S e
I m:.-rmlm | lecalID | start_Line | end_Line | toctic 1
fmm g s m i m mm e m
I ML 2 1] 21 test |
| MDSORA3GER |3 | 151 15 1 Redifinition |
| MOSO0E3bEG | 3 | 21 24l Emethy |
| MILL 14 | | 11 et I
| WILL I-5 I R | 2 test |
| HILL | B | L 2 1 test 1
I |'l.||,.|., I'F | b | 21 test I

| 8 | F 3 | Empothy |
9 | 21 30 Empathy |

9 rows Ln set (3,08 sac)

Figure 90. External ID in the database
118

3. ExplanationGetWsS

b. The Web Service

Now that we have data that is ready to be retrieved, we test the WS using
the soapUl software, as shown in Figure 91. The key component to the request is the
external ID. Using the external ID, the local system retrieves the respective assertion data
located in the assertion-related tables. Finally, with the successful test of the
ExplanationGetWS using soapUI, we deployed the .war file to the Glassfish server for its

subseguent consumption by the external client, as shown in Figure 85.

Figure 91. Testing ExplanationGetWS

C. USER FEEDBACK

With the operating prototype in hand, we obtained an acceptance test by a UMD

representative. We had the representative step through the following sequence of
119

operations: setting the capability status, storing a new assertion, transferring an assertion,
replacing an assertion, and deleting an assertion. The StatusReport WS and all three
functions of the KbUpdate were fielded in order to assist in the completion of a series of
engineering tests with the external system. Knowing that not all of the desired features
were implemented in the prototype, the representative was satisfied with the prototype
because it accomplished its intended purpose, and it allowed for future modifications as

necessary.

At this point, the system has been used in multiple engineering tests following
directed changes to the XSD by both IARPA and UMD. An agreed-upon structure of an
assertion is still under discussion by the UMD stakeholders, so actual assertions have yet

to be generated and forwarded to the external database.
D. SUMMARY

In this chapter, we used the system design discussed in Chapter IV to develop our
proposed prototype automated system to manage the assertion data generated by the
UMD performer team. The prototype provides a means for the stakeholders to validate

the system design and a working platform for follow-on research and development.

We used the MySQL server as our database and created six tables to store the data
necessary to execute the core operations. Our Web client application provides multiple

functions including:

) the ability to add, replace, or delete assertions
. the ability to store an assertion into the database
o the ability to set the capability statuses

We also provided screenshots of the assertion as displayed in the external STEP
application server. Both of our Web services and our Web client were developed using
the Java programming language. We demonstrated to the reader the WS testing results
using the soapUl software. Finally, we deployed our Web services to the Glassfish

application server in order to await future external client requests.

120

VI. CONCLUSION

A. SYNOPSIS

The goal for this thesis was to design and develop an automated system to be used
by the UMD performer team in support of the SCIL program led by IARPA. The SCIL
program seeks to investigate various methodologies to help understand the social goals of
people by demonstrating a relationship between these goals and their particular language
use. UMD’s role in the program is to identify the social goals that pertain to persuasion
by analyzing chat-based Web forums. The end product of the analysis of the unstructured

text is a set of assertions that declare acts of persuasion were attempted.

The system we designed enables users to locally store, manage, and transfer the
assertions to the external system. Eventually, SCIL will be combined with a functionality
that uses artificial intelligence techniques to process raw text. The processing will result
in assertions that are then forwarded to an external knowledge base run by IARPA.

In Chapter I, we stated that the solution to the system required by the UMD

performer team in the short run stemmed from the answers to the following questions:

1. What are the requirements for system to be implemented by the NPS
performer team?

2. What is the appropriate design of a modular framework to effectively
manage the natural language assertions in a knowledge base repository
and the sharing of the knowledge via the World Wide Web?

3. What is the appropriate Web-service design to allow for multiple users to
update the knowledge base repository of natural language assertions from

multiple sites?

To address these questions, we began our research with an investigation of SOA
and Web services. This background information introduces the key concepts we

expanded upon in the remainder of the thesis.

121

Chapter 111 began with the introduction of an abstract system domain model that
showed the components and their relationships to one another. We then presented the
stakeholder-validated software requirements to answer question number one. The SRS
included several use cases and SSDs to demonstrate the core system functionality. This is
the initial version of the requirements specification, and is subject to iterative

development based on the needs of the stakeholders.

For questions two and three, we started with an illustration of the four main tiers
of the system architecture: database, business logic, Web, and the presentation. We then
delved into each tier and discussed its respective design features. For the database, we
presented an ER diagram and then followed a six-step algorithm to normalize the
elements into a relational database design. The business logic tier was addressed by
showing the particular system data types and elements of the XML schema to be used in
the creation of our WS and client, along with their respective class diagrams. For the
Web tier, we presented elements of our WSDL, which described our WS interfaces for
our future clients. Lastly, using PowerPoint, we prototyped the layout of the graphical
user Web interface that will enable the local users to perform the core system
functionality including managing the assertion data and capability status. We finished the

design of our presentation tier with the Web application class diagrams.

The thesis concludes with a description of the SCIL prototype that we
implemented. We demonstrated the execution of the system functions by walking the
reader through a scenario that involved a user setting the capability status and also

performing the three main functions of the KbUpdate client.

The significance of this research is that it will support the analysis of the social
dynamics behind certain groups of interest by managing the assertions generated from
online chat communication. The prototype will serve as a vehicle to elicit additional

requirements for SCIL.
B. FUTURE WORK

The prototype described in this thesis uses a relational database schema to

organize the system data. We did not delve into the use of an object-relational or an
122

object-oriented database management system. Since we used an object-oriented
programming language to develop the system software, it would seem to be more
efficient to use a database that is designed to store objects instead of tuples. The data
types used in the prototype where simple and easy to implement using MySQL, but a
RDBMS does not handle complex data types as well as object-relational or object-
oriented database management systems. An analysis of using either of these database

management systems is a subject of future research.

The system design did not address concurrency issues that can be encountered
when, for example, two or more users attempt to concurrently modify the same assertion.
A race condition is a particular example of a concurrency issue. Stallings defines a race
condition as “A situation in which multiple threads or processes read and write a shared
data item and the final result depends on the relative timing of their execution” (Stallings,
2009, p. 207). An analysis of these system issues and their consequences would help to
ensure that the integrity of the data is not compromised.

We designed a Web GUI for the system, but this feature was not implemented in
our prototype. An analysis of some of the popular Web-development technologies (e.g.,
Ajax Frameworks, Java Server Faces, and Microsoft’s ASP.Net) is needed to identify

which of these techniques should be used to implement the deployed system.

The intent behind the DataPush client mentioned in Chapter 11 is still in debate
amongst the UMD stakeholders. Since the KbUpdate client already sends assertions to
the external system, it would be redundant to implement another Web client alongside
KbUpdate to perform the same function. We recommend that the DataPush client either
be dropped from further discussion or clearly specified to warrant the development of

another Web client.

123

THIS PAGE INTENTIONALLY LEFT BLANK

124

APPENDIX. XML SCHEMA

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XMLSpy v2010 (http://www.altova.com) by Javier Palomo (Naval
Postgraduate School) -->

<xs:schema xmlns:stepd="http://www.iarpa.gov/SCIL/STEP_Schema"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema™
targetNamespace="http://www.iarpa.gov/SCIL/STEP_Schema"
elementFormDefault="qualified" attributeFormDefault="unqualified" version="1.3d"
xml:lang="EN">

<!-- Schema Documentation -->

<xs:annotation>

<xs:documentation>

XSD for STEP (the IARPA SCIL Program SOA Platform)

Original Publication Date: 2009-10-26

Current Date: 2010-08-27

Current Version: 1.3d

</xs:documentation>

<xs:documentation>

Change Log (from Version 1.2)

2010-07-14 : Makes claims predicate-based; no wildcards

2010-07-16 : Enumerates claims by team

2010-07-21 : Changes the claim context element to SocialConstructDomain--an
enumerated type

2010-08-21 : Adds a SocialConstruct element to the assertions context--a simple
string

</xs:documentation>

</xs:annotation>

<!-- Global Types used in defining KB content -->

<!l-- Utility Types-->

<xs:complexType name="DataSource">

<xs:annotation>

<xs:documentation>Type that defines the data source used in generating an
assertion.

</xs:documentation>

</xs:annotation>

<Xs:sequence>

<xs:element name="DataMetadata">

<xs:annotation>

<xs:documentation>Metadata that describes the source of the data.
</xs:documentation>

</xs:annotation>

<Xs:complexType>

<Xs:sequence>

<xs:element name="SourceName" type="xs:string">

<xs:annotation>

<xs:documentation>The name of the source.</xs:documentation>
</xs:annotation>

</xs:element>

<xs:element name="SourcelLocation" type="xs:anyURI">
<xs:annotation>

<xs:documentation>A URI that allows the data to be located. Can be a dummy
value.</xs:documentation>

125

</xs:annotation>

</xs:element>

<xs:element name="SourcelLanguage" type="xs:language">
<xs:annotation>

<xs:documentation>The human language of the source.</xs:documentation>
</xs:annotation>

</xs:element>

<xs:element name="SourceType" type="xs:string">
<Xs:annotation>

<xs:documentation>The type of source: blog, email, broadcast conversation,
etc.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="SourceMedium">

<xs:annotation>

<xs:documentation>A enumerated list. Currently just text or
speech.</xs:documentation>

</xs:annotation>

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="text"/>

<xs:enumeration value="speech"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="DataSegment" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>

<xs:documentation>A segment of the source data processed in generating the claim.
</xs:documentation>

</Xs:annotation>

<xs:complexType>

<Xs:sequence>

<xs:element name="SourceDataSegment" type="xs:string"/>
</Xs:sequence>

</xs:complexType>

</xs:element>

</Xs:sequence>

</xs:complexType>

<xs:complexType name="KbClaim">

<Xs:sequence>

<xs:element name="PredicateClaim">

<xs:complexType>

<Xs:sequence>

<xs:element name="PredicateName" type="xs:string" default="Persuasion Attempt"/>
<xs:element name="Speaker">

<xs:complexType>

<Xs:sequence>

<xs:element name="Entity" type="stepd:Entity"/>
</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Target">

<Xs:complexType>

<Xs:sequence>

126

<xs:element name="Entity" type="stepd:Entity" maxOccurs="unbounded"/>
</Xs:sequence>

<xs:attribute name="type" type="xs:string" default="directed">
</xs:attribute>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Entity">

<Xs:sequence>

<xs:element name="id" type="xs:integer"/>

<xs:element name="type" type="xs:string" default="person">
<Xs:annotation>

<xs:documentation> "type" refers to the entity being either a person or a
group</xs:documentation>

</Xs:annotation>

</xs:element>

<xs:element name="role" type="xs:string">

<xs:annotation>

<xs:documentation> "role" refers to the wether the entity is either the speaker or
target</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="KbEvidence">

<Xs:sequence>

<xs:element name="EvidenceValue" type="xs:string">

<xs:annotation>

<xs:documentation>An overall assessment of the degree to which the set of evidence
statements support the claim. It can be a Bayesian probability, an interval
probability, a fuzzy number, a modal, a value on a Likert scale, etc. ; whatever
the underlying theory of evidence supports.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="EvidenceStatement" type="stepd:EvidenceStatement"/>
</xs:sequence>

</xs:complexType>

<xs:simpleType name="Display">

<xs:restriction base="xs:string">

<xs:enumeration value="Weak Confidence."/>

<xs:enumeration value="Strong Confidence."/>

<xs:enumeration value="No Confidence."/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="EvidenceStatement">

<Xs:sequence>

<xs:element name="ConstituentMultiset">

<xs:complexType>

<Xs:sequence>

<xs:element name="PersuasionTactic" maxOccurs="unbounded">
<Xxs:complexType>

<xs:group ref="stepd:PersuasionTacticGroup"/>

127

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

<Xs:group name="PersuasionTacticGroup">

<xs:all>

<xs:element name="tactic" type="xs:string"/>
<xs:element name="startline" type="xs:integer"/>
<xs:element name="endline" type="xs:integer"/>
<xs:element name="doc" type="xs:string"/>

</xs:all>

</xs:group>

<xs:complexType name="KbSupport">

<Xs:sequence>

<xs:element name="TheoreticalFrame" type="xs:string"/>
<xs:element name="TechnicalTerm" maxOccurs="unbounded">
<xs:complexType>

<Xs:sequence>

<xs:element name="TechnicalTermGloss" type="xs:string"/>
<xs:element name="DataSnippet" type="xs:string"/>
</xs:sequence>

<xs:attribute name="term" type="xs:string" default="redefinition"/>
</xs:complexType>

</xs:element>

</Xs:sequence>

</xs:complexType>

<xs:complexType name="KbAssertion">

<Xs:sequence>

<xs:element name="AssertionMetadata">

<Xs:complexType>

<Xs:sequence>

<xs:element name="AssertionId" type="xs:string">
<Xs:annotation>

<xs:documentation>Performer team generated ID for this
assertion.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="AssertionDtg" type="xs:dateTime">
<xs:annotation>

<xs:documentation>Performer team generated DTG on which this assertion was
created.</xs:documentation>

</Xxs:annotation>

</xs:element>

<xs:element name="AssertionFlag" type="stepd:AssertionFlag">
<xs:annotation>

<xs:documentation>Performer team generated flag that indicates whether this is a
"public" or "private" assertion.</xs:documentation>
</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="AssertionContext">

<Xs:complexType>

128

<Xs:sequence>

<xs:element name="LanguageUseDomain" type="xs:string" default="Persuasion
Attempt">

<xs:annotation>

<xs:documentation>A string that specifies the Language Use domain that the
assertion targets. Will ultimately be an enumerated list.</xs:documentation>
</xs:annotation>

</Xxs:element>

<xs:element name="DataSet" type="stepd:DataSource">

<xs:annotation>

<xs:documentation>The data set from which the evidence for the claim is
drawn.</xs:documentation>

</xs:annotation>

</Xxs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="AssertionClaim" type="stepd:KbClaim"/>

<xs:element name="AssertionEvidence" type="stepd:KbEvidence"/>
<xs:element name="AssertionSupport" type="stepd:KbSupport"/>
</xs:sequence>

</xs:complexType>

<xs:simpleType name="AssertionFlag">

<xs:restriction base="xs:string">

<xs:enumeration value="private"/>

<Xs:enumeration value="public"/>

</xs:restriction>

</xs:simpleType>

<xXs:simpleType name="ServiceState">

<xs:annotation>

<xs:documentation>Type that defines the state that a service capability can be
in.</xs:documentation>

</Xxs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="available"/>

<xs:enumeration value="unavailable"/>

<xs:enumeration value="unsupported"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="ServiceStatusReport">

<xs:annotation>

<xs:documentation>Type that defines the status report generated by a Performer
team.</xs:documentation>

</xs:annotation>

<Xs:sequence>

<xs:element name="KbUpdateCapability">

<xs:annotation>

<xs:documentation>Status of the KbUpdate capability. Current state and DTG of last
kb update.</xs:documentation>

</xs:annotation>

<xs:complexType>

<Xs:sequence>

<xs:element name="State" type="stepd:ServiceState"/>

<xs:element name="LastDtg" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

</xs:element>

129

<xs:element name="DataPushCapability">

<xs:annotation>

<xs:documentation>Status of the DataPush capability. Current state and DTG of last
data push.</xs:documentation>

</xs:annotation>

<xs:complexType>

<Xs:sequence>

<xs:element name="State" type="stepd:ServiceState"/>

<xs:element name="LastDtg" type="xs:dateTime"/>

</Xxs:sequence>

</Xxs:complexType>

</xs:element>

<xs:element name="ExplanationGetCapability">

<xs:annotation>

<xs:documentation>Status of the ExplanationGet capability. Current state and DTG
of last explanation returned.</xs:documentation>

</xs:annotation>

<xs:complexType>

<XS:sequence>

<xs:element name="State" type="stepd:ServiceState"/>

<xs:element name="LastDtg" type="xs:dateTime"/>

</Xs:sequence>

</xs:complexType>

</xs:element>

</Xs:sequence>

</xs:complexType>

<xs:complexType name="StatusRequestBundle">

<xs:annotation>

<xs:documentation>Type that defines a STEP server request for a status check.
Currently not used.</xs:documentation>

</Xs:annotation>

</xs:complexType>

<xs:complexType name="StatusReturnBundle">

<xs:annotation>

<xs:documentation>Type that defines the Performer team response to a status check
request.</xs:documentation>

</xs:annotation>

<XS:sequence>

<xs:element name="Payload">

<xs:complexType>

<XS:sequence>

<xs:element name="StatusReport" type="stepd:ServiceStatusReport"/>
</Xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ExplanationRequestBundle">

<xs:annotation>

<xs:documentation>Type that defines a STEP server request for an explanation.
Currently minimally specified.</xs:documentation>

</xs:annotation>

<Xs:sequence>

<xs:element name="Metadata">

<xs:complexType>

<Xs:sequence>

<xs:element name="AssertionId" type="xs:string">

130

<xs:annotation>

<xs:documentation>STEP ID of the assertion for which an explanation is
requested.</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ExplanationReturnBundle">

<xs:annotation>

<xs:documentation>Type that defines the Performer team response to an explanation
request. Currently a placeholder.</xs:documentation>

</xs:annotation>

<XS:sequence>

<xs:element name="Metadata">

<xs:complexType>

<XS:sequence>

<xs:element name="AssertionId" type="xs:string">

<xs:annotation>

<xs:documentation>STEP ID of the assertion that this explanation refers
to.</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Payload">

<xs:complexType>

<Xs:sequence>

<xs:element name="Assertion" type="stepd:KbAssertion" maxOccurs="unbounded"/>
</Xxs:sequence>

</xs:complexType>

</xs:element>

</Xxs:sequence>

</xs:complexType>

<xs:element name="StatusReportRequestMsgPart">

<Xs:annotation>

<xs:documentation>Used in a message sent by the STEP server to request a Performer
team capability status check.</xs:documentation>

</xs:annotation>

<xs:complexType>

<Xs:sequence>

<xs:element name="Metadata">

<xs:complexType>

<Xs:sequence>

<xs:element name="Messageld" type="xs:string">

<Xs:annotation>

<xs:documentation>Message ID generated by the STEP server.</xs:documentation>
</xs:annotation>

</xs:element>

<xs:element name="RequestorId" type="xs:string">

<Xs:annotation>

<xs:documentation>ID of the requestor (typically the STEP server) of the status
report.</xs:documentation>

</xs:annotation>

131

</xs:element>

</Xs:sequence>

</xs:complexType>

</xs:element>

</Xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="StatusReportResponseMsgPart">

<Xs:annotation>

<xs:documentation>Used in a message sent by a Performer team in response to a
StatusReport request.</xs:documentation>

</xs:annotation>

<xs:complexType>

<Xs:sequence>

<xs:element name="Metadata">

<xs:complexType>

<Xs:sequence>

<xs:element name="MessageId" type="xs:string">

<xs:annotation>

<xs:documentation>ID of the status request message to which this message is a
response.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="RequestorId" type="xs:string">

<xs:annotation>

<xs:documentation>ID of the ultimate requestor of the status check. Typically the
STEP server.</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Payload">

<xs:complexType>

<Xs:sequence>

<xs:element name="StatusReturnBundle" type="stepd:StatusReturnBundle"/>
</Xs:sequence>

</xs:complexType>

</xs:element>

</Xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ExplanationGetRequestMsgPart">

<xs:annotation>

<xs:documentation>Used in a message sent by the STEP server to request an
explanation for an assertion.</xs:documentation>

</xs:annotation>

<Xs:complexType>

<Xs:sequence>

<xs:element name="Metadata">

<xs:complexType>

<Xs:sequence>

<xs:element name="MessageIld" type="xs:string">

<xs:annotation>

<xs:documentation>Message ID generated by the STEP server.</xs:documentation>
</xs:annotation>

</xs:element>

132

<xs:element name="RequestorId" type="xs:string">
<xs:annotation>

<xs:documentation>ID of the requestor (typically a user) of the
explanation.</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Payload">

<xs:complexType>

<Xs:sequence>

<xs:element name="ExplanationRequestBundle"
type="stepd:ExplanationRequestBundle"/>
</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ExplanationGetResponseMsgPart">
<xs:annotation>

<xs:documentation>Used in a message sent by a Performer team in response to an
ExplantionGet request.</xs:documentation>
</xs:annotation>

<xs:complexType>

<Xs:sequence>

<Xs:element name="Metadata">

<xs:complexType>

<Xs:sequence>

<xs:element name="MessageIld" type="xs:string">
<Xs:annotation>

<xs:documentation>ID of the explanation request message to which this message is a
response.</xs:documentation>

</Xs:annotation>

</xs:element>

<xs:element name="RequestorId" type="xs:string">
<xs:annotation>

<xs:documentation>ID of the ultimate requestor of the explanation. Typically an
end-user.</xs:documentation>

</xs:annotation>

</xs:element>

</Xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Payload">

<xs:complexType>

<XS:sequence>

<xs:element name="ExplanationReturnBundle" type="stepd:ExplanationReturnBundle"/>
</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

133

THIS PAGE INTENTIONALLY LEFT BLANK

134

LIST OF REFERENCES

Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2004). Web services: Concepts,
architectures and applications. Heidelberg: Springer.

Booch, G. (2001, June 1). Architecture of Web applications. Retrieved July 26, 2010,
from http://www.ibm.com/developerworks/ibm/library/it-booch_web/

Conallen, J. (1999). Modeling Web application architectures with UML.
Communications Of The ACM , 42, 63-70.

Conallen, J. (2003). Building Web applications with UML; Second Edition. Boston:
Pearson Education, Inc.

Dijkstra, E. (1982). Selected writings on computing: A personal perspective. New York:
Springer-Verlag.

Elmasri, R., & Navathe, S. B. (2007). Fundamentals of database systems. Boston:
Pearson.

Erl, T. (2005). Service-oriented architecture: Concepts, technology, and design.
Crawfordsville, IN: Prentice Hall.

Erl, T. (2008). SOA: Principles of service design. Boston, MA: Prentice Hall.

Irani, R. (2001, November 21). Web services architect. Retrieved February 11, 2010,
from http://www.webservicesarchitect.com/content/articles/irani07.asp

Jovanovic, J. (2010, February 25). Designing user interfaces for business Web
applications. Retrieved July 26, 2010, from http://www.smashingmagazine.com
/2010/02/25/designing-user-interfaces-for-business-web-applications/

Larman, C. (2005). Applying UML and patterns: An introduction to obect-oriented
analysis and design and iterative development. 3rd Edition. Upper Saddle River:
Prentice Hall.

Leffingwell, D., & Widrig, D. (2003). Managing software requirements: A use case
approach. Boston, MA: Addison-Wesley.

Marks, E. A., & Bell, M. (2006). Service-oriented architecture. A planning and
implementation guide for business and technology. Hoboken, NJ: John Wiley &
Sons, Inc.

Marwell, G., & Schmitt, D. R. (1967). Dimensions of compliance-gaining behavior:An
empirical analysis. Sociometry, 30, 350-364.

135

Miller, G. R. (1980). On being persuaded: Some basic distinctions. Thousand Oaks, CA:
Sage Publishing, Inc.

Naval Research Laboratory. (2010, May 19). STEP[Powered by SCIL]. Retrieved August
1, 2010, from http://10.3.21.1:8084/STEP/login.jsp

Papazoglou, M. P., & van den Heuvel, W.-J. (2007). Service oriented architectures:
approaches, technologies and research issues. The VLDB Journal, 16, 389-415.

Schussel, G. (n.d.). Client/Server: Past, present and future. Retrieved November 13,
2009, from http://www.dciexpo.com/geos/dbsejava.htm

Spies, B. (2008, May 2). Web services, Part 1: SOAP vs. REST. Retrieved March 12,
2010, from http://www.ajaxonomy.com/2008/xml/web-services-part-1-soap-vs-
rest

Tong, R. (n.d.). MITRE. Retrieved July 15, 2010, from https://partners.mitre.org/sites/SCI
L/Shared%20Documents/STEP%20WEB%20SERVICES/STEP%20Webh%20Ser
vices%20Specification%20(v1.2)/stepPortTypes_12.wsdl

W3C. (2001, March 15). Web services description language (WSDL). Retrieved January
22, 2010, from http://www.w3.org/TR/wsdl

W3C. (2004, February 11). Web services architecture. Retrieved March 15, 2010, from
http://www.w3.0rg/TR/ws-arch/

W3C. (2004, October 28). W3C XML schema part 2: Datatypes second edition. Retrieved
July 14, 2010, from http://www.w3.0rg

Zimmermann, O., Tomlinson, M., & Peuser, S. (2003). Perspectives on Web services:
Applying SOAP, WSDL and UDDI to real-world projects. Heidelberg: Springer.

136

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Professor Peter Denning
Naval Postgraduate School
Monterey, California

Professor Man-Tak Shing
Naval Postgraduate School
Monterey, California

Professor Bret Michael
Naval Postgraduate School
Monterey, California

Professor Craig Martell
Naval Postgraduate School
Monterey, California

Marine Corps Representative
Naval Postgraduate School
Monterey, California

Director, Training and Education, MCCDC, Code C46
Quantico, Virginia

Director, Marine Corps Research Center, MCCDC, Code C40RC
Quantico, Virginia

Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
Camp Pendleton, California

137

